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ABSTRACT

This dissertation presents an extension of the Conservation Element Solution Element
(CESE) method from second- to higher-order accuracy. The new method retains
the favorable characteristics of the original second-order CESE scheme, including
(i) the use of the space-time integral equation for conservation laws, (ii) a compact
mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a
fully explicit, time-marching integration scheme, (v) true multidimensionality without
using directional splitting, and (vi) the ability to handle two- and three-dimensional
geometries by using unstructured meshes. This algorithm has been thoroughly tested
in one, two and three spatial dimensions and has been shown to obtain the desired
order of accuracy for solving both linear and non-linear hyperbolic partial differential
equations. The scheme has also shown its ability to accurately resolve discontinuities
in the solutions.

Higher order unstructured methods such as the Discontinuous Galerkin|1| (DG)
method and the Spectral Volume|2| (SV) methods have been developed for one-,
two- and three-dimensional application. Although these schemes have seen extensive

development and use, certain drawbacks of these methods have been well documented.
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For example, the explicit versions of these two methods have very stringent stability
criteria. This stability criteria requires that the time step be reduced as the order of
the solver increases, for a given simulation on a given mesh.

The research presented in this dissertation builds upon the work of Chang|3|, who
developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic
partial differential equation. The completed research has resulted in two key deliver-
ables. The first is a detailed derivation of a high-order CESE methods on unstructured
meshes for solving the conservation laws in two- and three-dimensional spaces. The
second is the code implementation of these numerical methods in a computer code.
For code development, a one-dimensional solver for the Euler equations was devel-
oped. This work is an extension of Chang’s work on the fourth-order CESE method
for solving a one-dimensional scalar convection equation. A generic formulation for
the nth-order CESE method, where n > 4, was derived. Indeed, numerical implemen-
tation of the scheme confirmed that the order of convergence was consistent with the
order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used
as the basic framework for code implementation. A new solver kernel for the fourth-
order CESE method has been developed and integrated into the framework provided
by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes
and parallel computing, remains intact. The SOLVCON code for data transmission
between computer nodes for High Performance Computing (HPC).

To validate and verify the newly developed high-order CESE algorithms, several

iii
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one-, two- and three-dimensional simulations where conducted. For the arbitrary or-
der, one-dimensional, CESE solver, three sets of governing equations were selected
for simulation: (i) the linear convection equation, (ii) the linear acoustic equations,
(iii) the nonlinear Euler equations. All three systems of equations were used to verify
the order of convergence through mesh refinement. In addition the Euler equations
were used to solve the Shu-Osher and Blastwave problems. These two simulations
demonstrated that the new high-order CESE methods can accurately resolve discon-
tinuities in the flow field. For the two-dimensional, fourth-order CESE solver, the
Euler equation was employed in four different test cases. The first case was used
to verify the order of convergence through mesh refinement. The next three cases
demonstrated the ability of the new solver to accurately resolve discontinuities in the
flows. This was demonstrated through: (i) the interaction between acoustic waves
and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic
flow over a guttered wedge. To validate and verify the three-dimensional, fourth-
order CESE solver, two different simulations where selected. The first used the linear
convection equations to demonstrate fourth-order convergence. The second used the
Euler equations to simulate supersonic flow over a spherical body to demonstrate
the scheme’s ability to accurately resolve shocks. All test cases used are well known
benchmark problems and as such, there are multiple sources available to validate the
numerical results. Furthermore, the simulations showed that the high-order CESE
solver was stable at a CFL number near unity.
iv
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CHAPTER 1

INTRODUCTION

This dissertation reports the development of a new high-order, unstructured-meshed,
Computational Fluid Dynamics, CFD, method for time-accurate solutions of hyper-
bolic Partial Differential Equations, PDEs, as well as conservation laws. In addi-
tion to a detailed derivation of the algorithms, the associated numerical implemen-
tation of the algorithms have been developed and verified in one-, two-, and three-
dimensions. These new high-order methods are an extension of the second-order,
space-time Conservation-Element Solution-Element, CESE, method, originally de-
veloped by Chang[4, 5].

The objectives of this research are (i) to develop a suite of high-order algorithms
based on the CESE method that are capable of solving fully coupled, linear and non-
linear, hyperbolic PDEs on one-, two-, and three-dimensional unstructured meshes;
(ii) for the newly developed numerical algorithms are generic and applicable to all
hyperbolic systems, i.e. not tied to any single constitutive relation and/or physical

process; (iii) to preserve all favorable attributes of the original second-order CESE
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method in the new high-order method, including: the stability constraint of the
Courant-Friedrichs-Lewy, CFL, < 1, the compact mesh stencil, a genuine multiple
dimensional algorithm, and the use of the unique space-time integration equation
instead of the Reynolds transport theorem; (iv) and to implement and verify that
the algorithms behave as intended when used to simulate one-, two-, and three-
dimensional flows, i.e. that the observed convergence rate matches the intended one
and that the scheme accurately resolves flow discontinuities.

The rest of Chapter 1 is organized as follows. Section 1.1 reviews the different
types of CFD solvers. Section 1.2 reviews three existing high-order CFD methods.
Section 1.3 provides background information on the second-order CESE method.
Section 1.4 provides more detailed discussions of the goals and scope of the present

research. This chapter concludes with an outline of the remainder of this dissertation.

1.1 Review of High-Order CFD Solvers

The use of computers to simulate fluid flow has been in development for decades.
During this period, CFD methodology has undergone steady improvements from the
early first-order structured-meshed solvers to the latest high-order, unstructured-
meshed solvers. This continuous development of CFD technologies has been driven
by an increased reliance on computer simulations by engineers to aid in product

development. CFD simulations have also been used by researchers to gain a better
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understanding of the physical processes observed in experiments when experimental
measurement are not easily obtained.

CFD solvers are easily categorized by their order of accuracy and the type of mesh
that they are designed to run on and. The order of the solver can be either low- or
high-order; for a low-order solver the convergence rate is less than or equal to two.
The two most common mesh types are structured and unstructured; in general an
algorithm designed to run on an unstructured mesh can also be applied to a structured
mesh, but not visa-versa.

In a structured-mesh solver, the computational domain is divided up through
curvilinear grid lines, which allow mesh clustering and relaxation along grid lines.
This results in a mesh that is composed of structured rows, columns, and stacks of
cells. Each cell is indexed by a set of integers, i.e., (i, j, k) in three-dimensional space.
The indices 7, j, and k represent the number of the mesh elements along the curvilinear
coordinates (£,7,(), which through coordinate transformation corresponds to the
Cartesian coordinates (x,y, z). The neighboring cells would have indices (i £ 1, j, k),
(1,7 £ 1,k), and (i,j,k £ 1), with respect to the central cell at (7,4, k) in the &,
1, and ¢ directions, respectively. This constraint requires that the two-dimensional
computational domain is composed of quadrilaterals arranged into rows with the same
number of columns in each. In three-dimensional space, the domain is composed
of hexahedra where each row of hexahedra have the same number of columns and

each stack has the same number of rows. In contrast, an unstructured mesh has
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no such constraint for cell connectivity. The conventional approach to unstructured
mesh discretization is to use triangular cells in two-dimensions and tetrahedrals in
three-dimensions. It is also possible to use other cells, such as quadrilaterals for two-
dimensional space and hexahedra, pyramid, and prism for three-dimensional space.
Moreover, mixed types of cells could also be used in a composed mesh.

Moreover, a common practice in structured-meshed solvers is the use of coordi-
nate transformation between the Cartesian coordinates and the curvilinear coordi-
nates. As such, the finite-volume method employed is imposed over a cube in the
transformed space as defined by the transformed coordinates (£, 7, () for the space-
time flux conservation. This transformation can degrade the accuracy of the solver
especially in regions where the transformation Jacobian varies greatly from cell to
cell. The caveat of this approach is that the mesh metrics are usually calculated by
a second-order method, which is incompatible with the high-order algorithms em-
ployed for flux conservation|6]. As such the accuracy of the numerical solution could
deteriorate.

When a structured mesh is applied to complex geometry, the mesh generator needs
to invoke multi-block topology in conjunction with curvilinear coordinates inside each
block. Across the neighboring blocks, the mesh cells need to be perfectly aligned for
seamless calculation for enforcing flux conservation. This process of generating a mesh
across multiple blocks can be rather laborious. In contrast, an unstructured-mesh

generator uses an advancing-front algorithm to generate the mesh. These schemes
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are designed to cover the entire computational space without any internal bound-
aries between jointed blocks. To accomplish this the algorithm creates cells along
the boundaries of the computational domain, then the algorithm works its way into
the interior of the spatial domain filling the space behind the advancing front with
unstructured cells. These features makes unstructured meshes ideal when meshing
complex geometries.

Another advantage of unstructured meshes is the ease at which adaptive mesh
refinement is applied. Unstructured-mesh solvers can increase the mesh resolution by
subdividing a single cell into multiple cells. If required, a region can be re-meshed to
obtain the desired resolution. In contrast, implementing adaptive grid refinement on
a structured-meshed solver requires special treatments for calculating fluxes passing
the interface between a coarse mesh and a fine mesh. Across the interface, a cell on
the coarse-mesh region could have multiple neighbors on the fine-mesh region. The
process of calculating the fluxes across the mesh interface could involve modification
of the CFD algorithm employed and thus could impact the overall accuracy of the
numerical solution.

To recapitulate, unstructured-meshed solvers have many advantages over structured-
meshes solvers because (i) the ability and efficiency to mesh a spatial domain with
complex geometry, (ii) the easiness in adopting an adaptive-mesh-refinement algo-
rithm on top of the CFD method employed, and (iii) the easiness in achieving high

mesh resolution around high-gradient areas such as curved boundaries [7].
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The second identifiable characteristic is the order of the method used to solve the
PDEs. In general, low-order methods are numerical inexpensive, straight forward to
implement, and can more easily handle large gradients. In this case expensiveness
refers to the amount of memory and CPU time required to integrate the solution at
one cell for one time step. Conversely, high-order methods are more complex and
expensive to run as when compared to low-order methods. Although more expensive,
high-order schemes can potentially make up for the additional demands by achieving
greater accuracy with fewer cells. For example if the error of the numerical results,
say in the Ly norm, was plotted against the computational time, one could find that
for the same computational time the numerical solution obtained by a high-order
scheme could be more accurate than that of a low-order method. In other words, a
high-fidelity solution is more efficiently obtained by increasing the order of the solver
rather than increasing the mesh resolution.

Due to the complexity of high-order schemes, the majority of the high-order solvers
have been been deployed on structured meshes. When using a structured mesh,
the mesh stencil is aligned along curvilinear coordinates which greatly simplifies the
computational logic. For example if a more accurate value of du/0¢ is required one
simply uses a larger stencil of cells along the £-axis. Although increasing the stencil
size works well on structured meshes it presents several difficulties when applied to

an unstructured mesh. This difficulty will be explained in detail in Section 1.2.1.
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1.2 High-Order Unstructured-Meshed Schemes

This section reviews several high-order unstructured-meshed CFD methods. The
schemes that will be taken into consideration are: (i) the K-exact method|8, 9],
(i) the Spectral Volume (SV) and Spectral Difference (SD) methods|6, 10], and
(iii) the Discontinuous Galerkin (DG) method|11 13]. These high-order schemes have
demonstrated higher-order convergence on unstructured meshes. The following dis-
cussions will focus on the strengths and weakness of each method in the following
aspects: (i) the complexity level in the reconstruction procedure, and (ii) the nu-
merical stability constraint.

The K-Exact methods use a larger stencil consisting of many cells, including
the central cell where the unknowns are being updated, its adjoining cells, and the
surrounding cells, and so on. A drawback of the method is that the choice of the
stencil used by the numerical algorithm is not unique and depend on the quality of
the mesh. Different stencil choices could lead to different solutions and thus different
numerical accuracies.

The SV method achieves higher-order accuracy by decomposing the individual
spectral volume into smaller sub cells, in which the conserved variables are discretized
and calculated. The SD method differs from the SV method in two aspects: (i) the
SD method solves the finite-difference counterpart of the governing equation in the
differential form instead of the integral form as that in SV method, and (ii) the SD

method has a special reconstruction procedure, in which the higher derivatives of the
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conserved variables are calculated by using the values of the variables evaluated at
the quadrature points of each cell. In the following sections, further comments on
each of the above-mentioned high-order method are provided.

The DG method uses multiple degrees of freedom and a higher-order basis func-
tions inside of each cell. This allows a higher-order discretization of the unknowns
inside one cell without involving many mesh cells in an extended mesh stencil. As
such, only the cells adjoining the central cell, where the unknowns are being updated
to the next time step, are used in algorithm. Due to the higher degree of freedom
and the use of high-order basis functions, the DG algorithm usually involves solving

a linear system of algebraic equations.

1.2.1 The K-Exact and Unstructured WENO Methods

The K-exact method started as a structured solver that was modified for use on
unstructured meshes. As a result, the mesh stencil employed is sprawling, containing
many more cells beyond the neighboring cells spreading out in a cone like shape. Since
this method is performed on unstructured meshes, the calculation of the derivatives
of unknowns cannot be performed by finite differencing the unknowns along the mesh
stencil grid lines. For example, a spatial derivative of an unknown in the 7 direction
must be calculated by taking into account the values of the cells that that do not share
the same values of £ and ( coordinates. Moreover, according to the paradigm of the

modern upwind method, the one-dimensional Riemann solver has been used as the
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building block of the numerical scheme. For multiple-dimensional space, a directional
splitting approach has been commonly employed. In general, the calculated of the
one-dimensional Riemann solver would be aligned with one of the curvilinear grid
line. For a two- or three-dimensional problem, the method individually applies the
one-dimensional solver in the &, 1, and/or ¢ directions with the understanding that
the actual three-dimensional Riemann problem could be approximated by adding two
or three one-dimensional Riemann solutions. As a result, an error would be included
in the numerical solutions. The amount of the error depends on the topology the
mesh employed. It has been impossible to justify this ad hoc approach. To date, it
has been considered as the most critical issue of the modern upwind methods.
Barth and Frederickson|8] developed the first high-order K-Exact method for solv-
ing fluid mechanics equations. Their scheme used a Finite-Volume (FV) method based
on the Godunov’s method. The method uses a large stencil, which contains as many
cells as the number of the unknowns per governing equation. As mentioned above,
there is not a unique way to select the neighboring cells to be included in the algo-
rithm. In other words, it is unclear which neighboring cell should or should not be
included in the algorithm. Barth noted that this scheme’s reconstruction matrix is
ill-conditioned when the aspect ratio of the cells is too large or when a quadratic or
higher order interpolation is employed during the reconstruction procedure[9]. One
approach to circumvent this problem is to use more cells than are required. This

results in an overdetermined system of algebraic equations. To solve this system a
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least-squares minimization approach is employed to determine the contribution of
each cell in the numerical algorithm. As such, one can always have a solution by
inverting the matrix.

Later, Durlofsky et al.[14] applied the Essentially Non-Oscillatory (ENO) recon-
struction procedure as an integral part in building up a K-Exact method. The re-
construction procedure used by the ENO method is based on adaptively selecting the
cells used in the stencil based on the principle of achieving the smoothest reconstruc-
tion. By using a different basis function Abgrall was able to form a system with better
stability characteristics when compared to previous K-exact methods[15|. Ollivier-
Gooch [16] applied the Weighted Essentially Non-oscillatory (WENQO) scheme for an
extended K-exact method for constructing an unstructured-meshed solver. A large
mesh stencil including many nodes are involved in the algorithm. Then, the contri-
bution of each node are weighed for the overall optimal solution. Friedrich reported
that the WENO method was no more computational expensive than that of the ENO
scheme, but in general the WENO method provides a more accurate solution|17|. He
also reported that the ENO scheme could be further optimized if a more efficient
stencil selection could be developed.

Dumbser and Kaser[18| reported the first application of the WENO scheme to
three-dimensional CFD simulation on unstructured mesh. They demonstrated the
results by using a seventh-order WENO method for two-dimensional problems, and

a sixth-order method for three-dimensional flows. Dumbser et al.[19] expanded their
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solver for solving non-fluid problems. This method also employed a quadrature-free
integration procedure, where the spatial integral is evaluated analytically instead of a
Gauss-quadrature procedure. The implicit temporal integration is done by using the
method of Arbitrary high-order schemes using DERivatives (ADER), which combines
a one-step time integration with the use of an approximate Riemann solver. The
method was originally developed by Toro et al. [20] for structured-meshed solvers
based on the upwind method.

A key advantage of the K-Exact schemes when compared to many of the other
high-order, unstructured-meshed solvers is that it remains stable as the CFL number
approaches one. For example, Ollivier-Gooch ran the simulations with a CFL number
of about 0.8[16].

In general, all of the above-mentioned methods suffered from an ill-conditioned
reconstruction matrix. The standard remedy was to use a mesh stencil that was larger
than required. This resulted in an over-determined system which was solved using a
least-squares approach. The requirement of a sprawling mesh stencil is quite cumber-
some. For example, the number of cells required for a three-dimensional third-order
solver could be 50 to 70 cells, when the solver is increased to fourth-order the number
of cells involved in the stencil was estimated to be 12021, 22|. This particular short-
coming renders the K-Exact method inefficient when running on parallel computers

based on domain decomposition.
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1.2.2 The Spectral Methods

Both SD and SV methods hold multiple Degrees Of Freedom (DOF) inside each cell.
This allows the scheme to use a compact mesh stencil, which contains a central cell
where the solution is being sought and its adjoining cells. Another advantage of the
SV and SD methods, as compared to the K-Exact methods, is that the reconstruction
matrix is never singular|10].

However, both SV and SD schemes suffer a from more stringent CFL constraint for
stable calculation as compared to the K-exact methods. In the literature, information
about the CFL numbers employed in the reported simulations by the spectral methods
have been scant. Liu et al. [2] reported that a CFL number approximately equal
to 0.089 was used for one of the two-dimensional, second-order simulations. For
other cases, the time increment instead of the CFL number was reported. From
this information, the change of the time increment for the other simulations were
estimated. The time increment used in the two-dimensional, third-order scheme was
decreased to about 58% of that for second-order scheme for the same calculation. For
the three-dimensional simulations, the time increment needs to be about 58% and 23%
of the two-dimensional simulations when a second- and third-order schemes where
used, respectively. Assuming that the wave speed and characteristic length remain
constant, the CFL number used for the three-dimensional, third-order simulations
would be about 0.02.

A stability analysis for the one-, two-, and three-dimensional solvers has been
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carried out by Van Den Abeele et al.[23-25|. In the one-dimensional case, weak
instabilities were found when the Gauss-Lobatto distribution was used in conjunction
with the upwind method for calculating flux|23]. Van Den Abeele concluded that the
dispersion and dissipation properties of the numerical solution are better metrics
for determining the quality of the scheme than the Lebesgue number. This study
was later extended to two-dimensional problems [24]. Again, weak instabilities of the
scheme were found and stringent CFL constraints must be heeded when the Lebesgue
criteria were used to generate the control volume. Based on the results of this analysis,
new third- and fourth-order methods for two-dimensional simulations were proposed.
The new methods were found to be more accurate and a larger time step could be
used in the calculation. It was reported that the CFL number could be increased
from 0.04 to 0.09, when the new fourth-order scheme was used. Van De Abeele
et al. applied the same stability analysis to their three-dimensional, unstructured
tetrahedron meshed solver and found that their second-order method is be stable as
long as the CFL number is well within the constraint. However, they could not find
a stable third-order scheme [25].

There has been significant research to make the SV methods more computationally
efficient. Ome such effort was initiated by Harris et al. where they developed a
quadrature-free SV method[26]. They were able to reduce the operational count of
the method by approximately 72% for both third- and fourth-order schemes. The

quadrature free method was extended to three-dimensions by the efforts of Yang
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et al.|27|. In their study they reported that fewer flux calculations were needed when
compared to similar methods using quadratures. However, no information about
CPU speed-up was provided. Another way to make the scheme more efficient is
to use an implicit time integration procedure. One such work was performed by
Breviglieri et al. wherein they where able to use a very large CFL number for steady
state problems|28|. A downside to these implicit schemes is that they do not always
provide a time accurate solution.

In an effort to provide a simpler, more efficient numerical algorithm Liu, et al.
developed the SD method. [6]. Wang et al.|29] extended the SD method to solve
the Euler equations. In one test case, they found that a third-order SD method is
about 25% faster than the SV method. Stability analysis of the SD method was
performed by Van de Abeele et al.|30]. They found that, in general, the position
of the solution points does not affect the accuracy or stability of the scheme. This
finding simplifies the design of the scheme and reduce the computational cost. They
also found that existing schemes that use the Chebyshev-Gauss-Lobatto nodes as the
flux points leads to weakened numerical instability. They provided the locations for
flux points in one-dimensional mesh as well as in the two-dimensional quadrilaterals,
which would ensure stable calculation. However, they could not provide a suitable
mesh stencil for two-dimensional triangular meshes which could achieve high-order
accuracy with stable calculation.

In summary, the spectral methods has certain advantages over the K-Exact method
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mainly because its reconstruction matrix is not ill-conditioned. The scheme also has
a compact stencil, which allows efficient treatment of mesh nodes along domain-
partition line for parallel computation. However, the spectral methods have some
drawbacks. The most serious one is the stringent and seemingly uncontrollable CFL

stability criteria which limits the maximum usable time step.

1.2.3 The Discontinuous Galerkin Method

The DG method is more mature when compared to the two previous high-order,
unstructured-mesh CFD methods presented thus far. The DG scheme was originally
developed by Reed and Hill|31| to solve the neutron transport equation. Later, in
a series of papers, the DG method was adapted to solve the Euler equations for
compressible flows by Cockburn, Shu, and their collaborators|11-13, 32|. The Runge-
Kutta (RK) method is used in integrating the equations in time. These initial papers
laid the ground work for the Runge-Kutta Discontinuous Galerkin (RKDG) schemes
for solving one- and two-dimensional Euler equations. Cockburn and Shu |1] noted
that the CFL condition for the RKDG scheme is CFL = 1/(2k + 1), where k is the
order of the polynomial employed in the discretization. This equation is exact for
k < 2. If k > 2, the estimated CFL is off by about 5%. They also tabulated the CFL
constraints as a function of both the order of the polynomial for spatial discretization

and the order of the RK scheme for integration in time. They found that as the order
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of the RK scheme increases, the CFL constraint would relax. The DG scheme has
been also been developed to solve the Navier-Stokes equations|33, 34|.

An extensive stability study of the RKDG schemes for two-dimensional problems
was performed by Toulorge and Desmet|35|. The study used a von Neumann-like
procedure to analyze the discrete equations. Their work was done on a structured
mesh composed of triangular cells. They discovered that the CFL constraints became
tighter as the quality of the grid decreased. The quality of the grid was determined
by the ratio of the radius of the inscribed circle to the radius of the circumferential,
or outer, circle. This study used two different flux calculations: (i) the Lax-Friedrichs
method, and (ii) the upwind method. They found that the maximum stable CFL
number for the fourth-order solver ranges from 0.176 to 0.262 and 0.160 to 0.319 for
the Lax-Friedrichs method and the upwind method, respectively.

Attempts have been made to modify the RKDG scheme to improve the computa-
tional efficiency. In the original DG method, the spatial integration was done using
Gauss quadrature, which requires 2N floating point operations for N equations at
each quadrature point. Atkins and Shu [36] implemented a quadrature-free formula-
tion, and the operation count was reduced to about a quarter of that by using the
Gauss quadrature method. However, this new more efficient method has a more re-
strictive stability criteria than the quadrature method. The quadrature free method
requires a CFL number that is between 50% and 10% of the that used by the original

Gauss quadrature method.
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Another DG method developed by Dumbser and Munz uses the ADER algorithm
to solve the Riemann problem|37|. The resulting scheme is a “one-step” method in
the sense that the temporal integration is done analytically in one step rather than
multiple steps as that in a RK scheme. Using this formulation they achieved eighth-
order accuracy when solving the two-dimensional Fuler equations. The scheme had
a slightly more stringent CFL constraint than that in the RKDG method. For one-
dimensional problems, the CFL number was equal to about 90% of that of the RKDG
method. For the two-dimensional problems, the CFL number needs to be reduced to
be about 45% of that of the RKDG method.

Dumbser et al.[38] extended the ADER-DG scheme to three-dimensional prob-
lems. The study reported a refined CFL constraint: CFL = a/(2k + 1), where k is
the order of the polynomial and o < 1. When the order of the polynomial is less
than 5, @ = 0.7. For the fifth- and sixth-order methods, o = 0.5. Although the CFL
constraint is tighter in the ADER-DG scheme than that the original DG method,
the ADER-DG method is computationally more efficient due to a more efficient inte-
gration algorithm. The ADER-DG scheme is also more efficient when running on a
computer cluster for parallel computing because it requires less message to be passed
among the computer nodes during the time integration.

Another attempt to speed up the DG method is the p-multi-grid method. The
p-multi-grid method was originally developed by Ronquist and Patera for the spectral

element method[39]. What makes this procedure unique is that during a single time
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step multiple time integration procedures are used. Luo, et al. adapted this method
for the DG scheme and reported a speed up of 10 times when compared to their
second- and third-order explicit solvers|7]. By including an implicit time integration
step they where able to use a CFL of 5000 and when using a fully explicit time
stepping procedure they achieved a maximum CFL number of 2. However, a draw
back of this method is that it has only been used for steady-state solutions.

The DG method and the spectral SV/SD methods have similar strengths. Both
methods are more stable and have a more compact stencil than the K-Exact scheme.
Several researchers have compared the DG methods with the spectral methods. Zhang
and Shu[40] used the one-dimensional convection equation to compared the DG
method with the SV method. They found that the numerical results obtained by
using the SV method had larger errors, as much as 416% more than that by using
the DG method. However, the SV method remained stable at higher CFL numbers.

Sun and Wang |41] reported a detailed comparison between the DG and SV meth-
ods in terms of the operational counts, the required computer memory, and the er-
rors of the numerical solution measured in norms. They found that the SV method
requires fewer operations and less memory than that of the DG scheme. For a two-
dimensional fourth-order scheme, the required floating point operations to march one
time step at one cell is 1496 for a scalar convection equation and 7334 for the non-
linear Euler equations. The SV scheme requires 1287 and 6168 operations for solving

the scalar convection equation and the Euler equations, respectively. For memory,
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the DG scheme requires 512 words per cell for solving the two-dimensional Euler
equations. The SV requires 361 words. For most cases the SV method was faster
in computation than the DG method. The one exception was the fourth-order Euler
solver. For numerical accuracy, the DG method had consistently smaller error norms
than that of the SV method. In these comparisons, the same time step was used for
the DG and SV methods, even though a larger time step could have been used for
the SV method. When applied to simulate a flow field with a double-Mach reflection,
they reported that the SV method was able to provide a more accurate solution of
the shock waves than the DG method.

To recapitulate, several high-order methods for unstructured-mesh solvers have
been reviewed in the proceeding sections. The K-Exact method is able to use a
larger time step but it also uses a large stencil to obtain the higher derivatives of the
unknowns in the discretization process. Thus, the K-Exact method is unattractive for
HPC or parallel computation. An even bigger problem with the K-Exact method is
its ill-conditioned coefficient matrix as a result of the reconstruction procedure, which
would lead to various difficulties and complex remedies in solving the linear algebraic
equations. The DG and spectral SV/SD methods, on the other hand, use a compact
mesh stencil which makes these methods more amenable to parallel computation.
When comparing the SV method to the DG method, the SV method requires fewer
floating point operations and less computer memory. Moreover, the SV/SD methods

have better shock capturing capabilities as compared to the DG method. However,
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in general, the DG methods are more stable and accurate than the spectral methods.

The DG methods also seem to be more widely used than the spectral methods.

1.3 The Space-Time CESE Method

The main contribution of the present dissertation is the successful extension of the
space-time CESE method from low-order to high-order, in two- and three-dimensions.
And from a one-dimensional fourth order scheme to an arbitrary order accurate
scheme in one-dimension. This section provides the background information about
the space-time CESE method, which was originally developed by Chang in the early
1990s[4, 5. In contrast to conventional CFD methods, the CESE method has several
unique features. The most significant attribute is the use of a unique space-time
integration equation for the conservation laws, different than the Reynolds transport
theorem. In fact, the Reynolds transport theorem is a special case of the more gen-
eral space-time integral in the CESE method. When deriving the space-time integral
equation, the governing equations, e.g. Euler Equations, are first cast into a space-
time divergence-free formulation. Then, by using the Gauss divergence theorem,
defined in the space-time domain, the differential equations in the space-time diver-
gence form is recast into a space-time integral form. This equation is different from
and is more general than the traditional Reynolds transport theorem. The CESE
method integrates the space-time integral equation to progress solution in time.

To perform the integration, the space-time domain is divided into non-overlapping
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Conservation Elements (CEs). The space-time flux conservation is enforced locally
over each CE and globally over the whole space-time domain of interest. To facilitate
the integration over each CE, Solution Elements (SEs) are define. In a SE the flow
variables and the fluxes are discretized and represented by a Taylor series, expanded
in both space and time. The order the Taylor series and proper integration over the
CE determines the order of the accuracy of the CESE method. In the original CESE
method a first-order Taylor series was used and resulted in a second-order accurate
solver. In this work, a higher-order, i.e., third-order and beyond, Taylor series will
be employed for discretization to yield the high-order CESE methods.

In the time-marching calculation, the Taylor series coefficients of the flow variables
and fluxes in each cell at the new time step are sought. As it will be shown in
the dissertation, the fluxes, the spatial and temporal derivatives of fluxes, and the
temporal derivatives of the flow variables are calculated based on the values of the
flow variables and its spatial derivatives. In other words, the primary unknowns of the
CESE methods are the flow variables and its spatial derivatives only. Therefore, the
operational counts and the required computer memory of the CESE method depend
on the number of the flow variables and their spatial derivatives only. This particular
feature of the CESE method will be preserved in the high-order extension of the
method.

The mesh stencil of the CESE method is similar to that of the Leapfrog and the

DuFort-Frankel method, in that the solution marches forward in a time-staggered
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mesh. However, unlike the leap-frog scheme or the DuFort-Frankel scheme, the CESE
method is a two-level scheme, in which the method only requires the solution at
the immediately previous time step. In contrast, the solutions at the previous two
time steps are required for the leapfrog and the DuFort-Frankel method. Moreover,
the staggered space-time marching mesh stencil allows for a unique value of the flux
functions at an interface of the conjoined SEs to be determined. This property negates
the need of a Riemann solver to determine the values along a face when calculating
the flux.

The original second-order CESE method as well as the high-order CESE methods
are stable as long as CFL number is < 1. This CFL constraint for stable calculation
has been shown theoretically by Chang [3, 4] based on the von Neumann stability
analysis of the CESE method for solving both linear and the non-linear Burgers equa-
tions. In the past, the theoretical result of the CFL constraint has been thoroughly
verified through a multitude of simulations of hyperbolic problems including many
non-fluid applications. As will be shown in this dissertation, the same CFL< 1 cri-
terion for stable calculation holds up well for the fourth-order CESE method, when
applied simulations of both smooth compressible flows and flows with shocks.

The original second-order CESE method has been previously applied to solve
a wide varieties of linear and nonlinear hyperbolic problems, including (i) com-
pressible flows modeled by the Euler and the Navier-Stokes equations for high-speed

aerodynamics with shocks as well as low-Mach-number, nearly incompressible flows
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|5, 42-45|; (ii) combustion problems with multiple species and finite rate kinetics
[46-48|; (iii) aero and hydro acoustics with linear and nonlinear waves in the fluid
flows [49, 50]; (iv) plasma dynamics modeled by the ideal Magnetic-Hydro-Dynamics
(MHD) equations |51, 52|; (v) two-phase water flows with cavitations or air bubbles
[53, 54]; (vi) linear and nonlinear waves in complex solids, including anisotropic elastic
solids, viscoelastic soft tissues, and plastic solids[55 57|; (vii) the Maxwell equations

for electromagnetism|58|; and (viii) acoustic wave shock interactions|50].

1.3.1 Evolution of the CESE Method

Since its inception the methodology of the space-time integration procedure used
by the CESE method has remained intact. In the setting of the original second-
order CESE method, this space-time integration procedure has been extended from
solving the conservation laws in one spatial dimension to problems in two and three
spatial dimensions. On the other hand, the central differencing procedure used to
determine the odd derivatives of the flow variables, e.g., the first spatial derivatives
of the primary unknowns, has seen systematic improvements.

The first such enhancement was the development of the CFL insensitive scheme.
Early on, it was discovered that the a — e scheme, originally developed for one-|5| and
two-dimensional[59] CESE solvers, became diffusive as the CFL number approached
zero. To mitigate the numerical dissipation, Chang developed the c—7 scheme |60, 61].

The next improvement to the central differencing procedure in the CESE method
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was the development of the Edge Based Derivatives (EBD) method by C.-L. Chang
[44]. The motivation of the EBD method was that the ¢ — 7 scheme produced poor
results when the aspect ratio of a cell was greater than approximately 100. Meshes
composed of cells with large aspect ratios are commonplace when using the Navier-
Stokes equations to simulate viscous flows. For example in the near-wall regions,
slender cells are used to resolve the boundary layer. By using the EBD scheme,
meshes composed of skewed cells with the aspect ratios as large as 10° are possible.

Another import improvement to the CESE scheme was the development of a local
time stepping procedure by Chang [62-64|. This scheme allows different cells to
take different time steps. Variations in time increments among the cells in a mesh
could be of 2 to the k-th power. For example, if the maximum time step in the
computational domain is At .y, other local time steps could be equal to Aty /(2%),
where k£ = 0,1,2,.... This would allow each cell to have a local CFL. number close to
a desired value, e.g. unity. Moreover, as shown by Yen|62] and Chang|63|, the local
time stepping procedure can also be used for efficient calculation of time-accurate
solutions.

Finally, it is worthy to note that the space-time integral equation employed by the
CESE method is inherently suitable for simulations with moving meshes, such as fluid-
solid interactions. Such capabilities have been developed by Cook et al.[65], wherein

the CESE fluid solver is coupled with a Finite Element Analysis (FEA) solver for
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solid mechanics to simulate the motion and deformation of the solid medium induced
by fluid motion around the solid.

To date, a key criticism against the CESE method was that the method lacks
a high-order extension. Previous attempts to extend the scheme to be high-order
in accuracy resulted in more stringent CFL constraints and undesirable complexity
in the algorithm|[66]. This changed in 2010 when Chang|3| reported a new one-
dimensional, fourth-order CESE scheme which remained stable when the CFL equaled
one. This was shown to be true for both the linear convection equation as well
as the non-linear burgers equation|3|. This work is important because it proved
that the high-order CESE scheme maintains the same stability constraint, i.e. CFL
number < 1. Furthermore, it showed that the fundamental structure of the space-
time integration in the high-order CESE method remains the same as the original
second-order CESE method. This means that the same compact mesh stencil used
in the original method is used in the new high-order CESE method. Essentially, all
advantageous features of the original CESE method have been retained in the new
scheme. This paper also provided a sketch for a multidimensional system, making an

important observation on the ability to use the alternate rule of differentiation.

1.4 Objectives of the Dissertation Work

In this chapter, a review on the existing high-order, unstructured-meshed CFED solvers

based on the K-Exact method, the DG method, and the spectral methods was shown
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in Section 1.2. Suffice it to say that there is room for significant improvement in accu-
racy and robustness for high-order, unstructured-meshed CFD solver. On the other
hand, the second-order CESE method has great potential to become a mainstream
numerical framework with a long life cycle for time accurate solutions of all sorts of
hyperbolic problems including the aerodynamics equations.

By using the original second-order CESE method for one-, two-, and three-
dimensions in conjunction with the methodology found in the newly developed fourth-
order extension of the CESE method the scope of the present dissertation is to expand
the CESE scheme to high-order for time-accuracy solutions of hyperbolic problems
and conservation laws in in one-, two-, and three-dimensional space. Furthermore,
it is desired that these new algorithms retain the favorable attributes of the original
second-order CESE scheme. Specifically, the envisioned high-order CESE method

and the associated CFD codes must fulfill the following objectives:

1. The new high-order method represents a framework for a hierarchy of schemes,
which allow systematic extension to higher order methods, i.e., fourth-, sixth-,

eighth-order and beyond.

2. The new high-order method must be based on integrating the space-time flux
conservation equation, instead of the Reynolds transport theorem for the con-
servation laws. As such, the space-time flux in the time-marching calculation
is always conserved.

3. The method must have a compact mesh stencil, which involves only immediate
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conjoining mesh cells of the central cell, where the unknowns are being solved

in the time-marching calculation.

4. The method must retain the same stability criteria as the second-order CESE
method, i.e., a CFL number < 1. Preferably, CFLL &~ 1 can be achieved for all

high-order options of the scheme for efficient time-marching calculation.

5. The method must be truly multi-dimensional without relying on directional
splitting for calculating fluxes in multi-dimensional space. This allows the in-
tegration formulation developed for one-dimensional problems to be straight-
forwardly extended to two-, and tree-dimensional problems without losing any

accuracy in the formula.

6. The method must be able to handle complex geometries through unstructured
mesh composed of mixed elements, including the use of tetrahedrons, hexagons,

pyramids, and prisms for a three-dimensional problem.

To achieve the above objectives, a high-order space-time CESE method and codes
have been developed for solving two- and three-dimensional hyperbolic PDEs. To
demonstrate the capability of the new solver, I will focus on solving the Euler equa-
tions for compressible flows with and without shock waves. The work reported here
involves extensive works in three aspects: algorithm development, code development,
and code validation. The overall goal is to deliver a robust, highly accurate, two-

and three-dimensional, high-order CESE code for use on unstructured meshes. For
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code validation, standard benchmark test cases, in one-, two-, and three-dimensions
where be performed and the results where compared to either: theoretical solutions,
previously reported CFD results, or experimental data.

The code development effort including the debugging process of a unstructured-
meshed CFD code is a daunting and complicated task. To mitigate the computer-
science aspect of this endeavor, an in-house, open-sourced numerical framework,
SOLver CONstructor (SOLVCON)|67|, has been adopted. A framework is a piece of
software that provides a platform to aid in the development of future software. This
is accomplished by providing basic functionality found across software of a given type
and provides a non-intrusive way to insert custom numerical algorithms. In partic-
ular SOLVCON provides input/output (IO) logic, domain decomposition, message
passing, and the ability to insert custom routines.

The remainder of this dissertation is divided into the following five chapters:
Chapter 2 presents the derivation and applications of the one-dimensional high-
order CESE method. Chapter 3 provides the derivation of the two-dimensional,
fourth-order CESE method. This chapter also includes code validation, including
two-dimensional numerical results of various test cases obtained by using the newly
developed high-order CESE code. Chapter 4 illustrates the derivation of the three-
dimensional fourth-order CESE method. The chapter also reports numerical results
of several test cases for code validation. Chapter 5 presents the numerical implemen-

tation of the new solver for hyperbolic problems in two- and three-dimensional spaces.
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Chapter 6 provides a summary of this research work and recommends possible future

work in certain topics.
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CHAPTER 2

THE ONE-DIMENSIONAL, HIGH-ORDER CESE METHOD

In this chapter, the high-order CESE method for solving a set of one-dimensional cou-
pled, linear or nonlinear, first order hyperbolic Partial Differential Equations (PDEs)
is discussed. In particular, the Euler equations for compressible flow will be used as
an example. Nevertheless, the derivation here is general and can be applied to various
other hyperbolic problems and conservation laws. Moreover, a generic formulation
for nth-order CESE will be presented.

To proceed, a set of one-dimensional PDEs cast into a vector form are considered:

U  OF

E*% =8, (2.1)
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where U, F, and S are the column vectors for the primary unknowns, the flux func-

tions, and the source terms, respectively:

U= (Ul,UQ,Ug, e auNeq)t7

F = (flaf2>.f3a"' ’fNeq)t’

S = (81, §9,83, " ,SNeq)t,
where uy, fi, and s, with &k = 1,2, ..., N, are the entries of the corresponding vectors.
Ny is the number of equations. The superscript ¢ denotes transpose. Equation (2.1)

can be cast into the following divergence equations:

\Y hz = S; (2 2)
with ¢ =1,2,..., N, where the space-time flux vector h; is defined as

The divergence in Eq. (2.2) operates in the two-dimensional Euclidean space & with
(z,t) as the independent coordinates. Aided by the space-time flux vector h; and

Gauss’ divergence theorem, the original PDEs, Eq. (2.1), is transformed into the
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following more fundamental space-time integral form of the conservation laws:

S(V) \%

where S(V) is the boundary of a space-time region V', and ds = don. Where do
and n are respectively the differentiable area and outward facing normal vector of
the surface element on S(V'). Figure (2.1) shows an arbitrary space-time domain V'
and its surface S(V'), over which the space-time integration by using Eq. (2.4) can be
performed. The Left Hand Side (LHS) of Eq. (2.4) is integrated over the region S(V)
by the CESE scheme. The Right Hand Side (RHS) of Eq. (2.4) is the integration
of the source term over the same space-time domain. The method employed to
carry out the space-time integration of the source terms could vary depending on the
characteristics of the source term, e.g. linear or non-linear sources with respect to the
primary unknowns, stiff or non-stiff, etc. In the CESE method, Eq. (2.4) is integrated
over each Conservation Element (CE), which in turn is defined by the mesh stencil

of the method.
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ds

Figure 2.1: An generic closed space-time domain V' and its surface S(V'), over which
the space-time integration, Eq. (2.4), is performed.

2.1 One-Dimensional Discretization

In the CESE method, the space-time domain is divided into non-overlapping CEs,
over which the space-time flux conservation is enforced individually over each CE and
collectively over the entire domain. On the other hand, SEs are used for discretizing
the unknowns and fluxes. The integration is facilitated by the discretized values of
the primary unknowns and the flux functions in each Solution Element (SE). The
discretized values of the unknowns and the fluxes are used to facilitate the numerical
integration. Together, CEs and SEs form a space-time mesh stencil. In deriving the
high-order CESE methods, the mesh stencil employed used in this one-dimensional
derivation is identical to the one used by Yu|68]. For completeness, the description

of the mesh stencil is repeated here.
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Figure (2.2) shows one possible space-time mesh configuration. The abscissa de-
notes the one-dimensional space. In this figure the ordinates denote the time marching
direction, the red arrows show the propagation of the solution in the time-marching
calculation. As shown in Fig. (2.2), the space-time domain is divided into rhombus-
shaped SEs. The same space-time domain is also divided into CEs, over which the
space-time integration by using Eq. (2.4) is performed. Figure (2.3) shows three
rhombus shaped SE associated with one CE. The rhombus shaped SE is used over
the more standard rectangular SE when a source term is present. The rhombus shape
of the SE is required when a source term is present in the governing equation. It is
not required to modify the definition of the CE, original shown in[5].

Figure (2.4) shows several important locations on the CE. These point are by both
the space-time integration and the central differencing procedure. Based on the one-
dimensional CESE method. The solid dots A, C', and E are the solution points and
are located at (z;,1"), (zj_1/2,t""/?) and (2;41/2,¢""'/?), respectively. Point M7 is
located midway between A and F and M~ is midway between points A and B. Point
P7 is located between point M™ and point F' and point P~ is between M~ and B.
The distance between P* and M¥ is determined by a parameter 7. Associated with
the solution point A, the rectangles ABC'D and ADEF are the Basic CEs (BCEs).
The rectangle BCEF', i.e. the union of ABC'D and ADFEF, is called a Compound
CE, or CCE.

To proceed, let SE(j,n) denote the SE with its solution point at the mesh node
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Figure 2.2: The mesh stencil and the zigzagging pattern of the time-marching calcu-
lation in the one-dimensional CESE method.

(x;,t"). Inside the SE(j,n), the flow variables u;, i = 1,..., N,, are discretized by

a Taylor series. If a fourth-order CESE method is employed than a third-order,
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SE

CE
(j-1/2,n-1/2) (j+1/2, n-1/2)

Figure 2.3: The Solution Element (SE) and Conservation Element (CE) of the one-
dimensional CESE method.

two-dimensional Taylor series would be used:

up (v, t;3,m) = (ug)] + (wiz)] (x — 25) + (uge)j (¢ — 1)
1

5 | = )+ (i) (¢ = )] + (i) (@ = ) (¢ = #7)
Lr n 3 n n\3

g | e = )" + (w3 (¢~ 7))

3 [ 0 = 20 = 9 + (i — )0 = ] +

O(x — ;)" + Ot — t")~.

(2.5)

The superscript * in Eq. (2.5) denotes the value of the discretized unknown at a
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Figure 2.4: The integration of the space-time flux over CEs based on the one-

dimensional CESE method.

space-time location (x,t) inside the SE(j,n). In Eq. (2.5),

o 83ui
ui,xzx = 01'3 .

0ui 82'&,’

Wi = %a Uj,zx = Wa

Similar notations are used for temporal derivatives and space-time cross derivatives of

u;. And, (u;.)7 denotes the value of the derivative u;, at the solution point (z;,¢").

The same notation is applied to other derivatives.

Equation (2.5) is valid for the fourth-order CESE method. This equation is easily

generalized for any higher order system. This generalization is shown in the following

equation:
% o o Jar N e (ui,matb)? a n\b
ui(z,t,],n):z Z W(m—xj) (t—1t")", (2.6)
a=0 b=0 e
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where

0I+Jui
oxlot!’

Uj Ty =

Ny is the order of the Taylor series used by the CESE method. For example a
fourth-order CESE method uses a third-order Taylor series and N,; would equal 3.
All coefficients in the Taylor series are defined and held constant at the solution point
(x,t"). Similarly, the flux functions f;, i = 1,..., N,,, are discretized by the Taylor

series expansion inside the SE(j,n):

Ny Ny—a f b
1,29t

flatjin=> Y e (v — ;)" (t —t")". (2.7)

a=0 b=0

To proceed, the spatial and temporal derivatives of primary variable u; could

also be discretized by using the Taylor series expansion inside a SE. Consider the
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fourth-order CESE method, then as a result of Eq. (2.5), we have

Wi (@85 3,m) = (i) + (Uiee)j (2 = 25) + (i0)7 (L = )

5 [ = 2+ (i)}~ )24]

t (tsm)} (@ = 23)(t = 1) + O — ;) + O(t = 1")%,
U;k,t(l', t; 7, n) = (ULt)? + (Uz@t)y(ll' — :L’j) + (ui,tt)?(t _ tn)
1

5 [ (i)} @ = 23 + (i) — )7+ ]

+ (i)} (@ = @5)(t =) + O —2;)* + O(t — 1")",
(2.8)
O(x — :ch)2 + Ot —t")?,
Ui (@, 5,m) = (Uige)j + (Wien)] (@ — ;) + (wige); (& — ")+
O(x — :ch)2 + Ot — t")?,
u;mt(ajv tu jv n) = ('Uzi,mt)? + (UZ,xxt);L('r - l’j) + (ui,:ptt)?(t — tn)‘|‘

O(x —z;)> + Ot — t")%.

The coefficients of the Taylor series for the third-order terms are constant inside the
SE(j,n) and are identical to that in the Taylor series for the primary unknowns u;
shown in Eq. (2.5).

In general, the discretized derivatives of u; with the I-th derivative in space and

Jth derivative in time is easily expressed by the following Taylor series expansion
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anchored at the solution point (z;,t"):

A B—a

uj 100 (T, 85 J,m) = ZZW (x—:vj)a(t—t")b, (2.9)

a=0 b=0

where A = Ny — I and B = Ny — I — J. Similarly, the profile of the (I + J)th
space-time derivative of the flux function f; inside a CE with the solution point at
(x,t") can also be represented by a Taylor series expansion formulated in terms of

higher-order space-time derivatives:

ABa

fz:c“ Itb a
Frow(@tijn) =33 ;g,“ (z— ;)" (t — ") (2.10)

a=0 b=0

For the profiles of the primary unknowns and the flux functions to be fully defined
inside an SE, all coefficients of the Taylor series for u;, Eq. (2.9), and f;, Eq. (2.10),
need to be calculated at all solution points in the time-marching scheme. However, it
will be shown that not all of the coefficients in the Taylor series are independent. In
the following section it will be shown that the only independent, or primary variables

are the conserved variables, u;, and its spatial derivatives, w; z, w; gz, - ...

2.2 One-Dimensional Independent Variables

In this section it will be shown that the only independent variables in the time-
marching calculation are the conserved variables and their spatial derivatives. Other

variables, i.e. the temporal derivatives of the conserved variables (w; ¢, w; z¢, Wi, - . -)
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and the fluxes and its spatial and temporal derivatives, can be readily calculated from
the primary unknowns (u;) and its spatial derivatives.

In the following, a detailed derivation that relates the fluxes and their space-time
derivative to the derivatives of the primary unknowns and their derivatives. Two
different approaches where employed to accomplish this. The first method, shown
below, uses the Jacobian and its derivatives to relate the fluxes back to the primary
unknowns. The second method calculates the spatial and temporal derivatives of
the fluxes directly through a generalization of Leibniz rule for differentiation. The
Jacobian method is shown below because it is more generic and not tied to any
particular physics. The Leibniz method was used in the numerical code because it is
easier and more efficient to code. This method is further explained in Section 5.1.

Given the model equations, the fluxes are known functions of the primary un-
knowns. Therefore, the derivatives of the fluxes can be determined through the chain

rule. To proceed, let the first-, second-, and third-order Jacobian matrices be denoted

by

fi = 0fi fi = 0 fi T O fi
W= 8ul’ bl = 8u18uk’ bk = 8ul8uk8up’

(2.11)

where 4,0, k,p = 1,..., Ng. Aided by the Jacobian matrices, the space-time deriva-

tives of flux functions can be expressed as functions of u; with ¢ =1,2..., N, and
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their space-time derivatives:

Ne
(9f, . 1 0ul
3o = Xl:fz,la—%, (2.12)
where ¥ = {z,t};
a2fi o %f a Uup + ZE: f- aul aUk (2 13)
00,0, & O, 0w, HEOw, 0w, '

where (Uq,Uy) = {(z, ), (t,t), (z,t)}; and

Negq

P
OV, 0U,0 4 Zf ”axp 8\1128\113

N,

- o 0 o 0 02 0
Zfi’lk ( Uuy UL i uy UL 4 uy uk> 4
NG

OV10V, 0V3  OV,10¥3 0, 00V 3 00,

Negq

Zf‘ ou; Ouy, 0up
i YO0, Oy 00

(2.14)

where (Wy, Wy, U3) = {(x,x,x),(t,t,t),(x,x,t),(x,t,t)}, for i = 1,..., N The
space-time derivatives of the fluxes that are required for a fourth-order CESE scheme
are shown in Eq. (2.14). This method can be extended to orders higher than fourth
by taking further derivatives of the fluxes with respect to the conserved variables. A
drawback of this approach is that with each additional derivative the flux functions

become increasingly complex. This is easily seen in Eq. (2.14). However, when solving
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a linear hyperbolic PDE the fluxes are a linear function of the conserved variables.
This means that all second and greater derivatives of f; with respect to u; are null.
This greatly simplify the calculation of the derivatives of the fluxes.

To proceed, it will be shown that the derivatives of the primary unknowns u;
involving temporal differentiation can be recast into expressions in terms of the spatial
derivatives of the primary unknowns. For the first temporal derivative of the primary

unknown, (u”)?, the following algebraic equation is considered

(uig)j = (s3)j — (fia)j- (2.15)

The equation comes about based on the assumption that the discrete analog of the
original PDE calculated at the solution point is valid. In the second-order CESE
method, this equality can be rigorously derived based on the space-time flux conser-
vation over a rhombus-shaped CE [5], which coincides with an SE. For the fourth- and
sixth-order CESE methods in the present development, however, no such implication
can be derived. Suffice it to say that Eq. (2.15) is simply a plausible assumption.
Next, the original model equation, Eq. (2.1), is differentiated with respect to space

and time for additional higher-order PDEs and their algebraic analogs at the solution
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point (z;,t") are:

(uLtI)? - (Si,x)? - (fz,xx)?a
(ui,tt)? = (Szt)? - (fzxt)yu
(ui,tmm)? = (Si,:px)? - (fz,xwx)?a

(Uz‘,m)? = (Sztm)? - (fmm)?,

(ui,ttt)? = (Si,tt)? - (fi,xtt)?>

Further derivatives of Eq. (2.1) can be taken to obtain even higher derivatives of (u;)}
as required. Alternatively, this differentiation can be written in a more generic form

as:

(Ui pr09)] = (Sigrer—1); — (figrerpr—1)] (2.16)

for all the primary unknowns, ¢ = 1,2,..., N,. The superscripts I = 0,1,..., Ny
and J = 1,2,..., Ny — I denote the order of the Taylor series coefficients. As
mentioned above, the spatial and temporal derivatives of the flux functions shown in
Eq. (2.16) can be obtained through the spatial and temporal derivatives of the primary

unknowns wu; in conjunction with the use of the Jacobian matrices and the chain rule.
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As a result, the only independent variables in the time-marching calculation are the
primary unknowns u; and their spatial derivatives.

For the fourth-order CESE method, the independent unknowns of each model
equation include the following four Taylor series coefficients: (u;)%, (;2)7, (Uizz)],

J

and (Uje0)j- When a fourth-order CESE method is employed to solve the one-
dimensional Euler equations, where N., = 3, there will be total of 12 unknowns per
cell in the time-marching calculation. In general, if a (N, +1)th-order CESE method
is employed to solve a set of N,,, coupled hyperbolic PDEs, there are (Nj; + 1) X N,

unknowns at each mesh cell. These (Ny + 1) x N, unknowns can be categorized

into two groups: (i) the even derivatives of the primary unknowns wu;, including the

n

%, the second derivative, (u;z.)7, ..., and the k-th derivative

zeroth derivative (u;) j

(u;42x)%, where k = (Njy —1)/2; and (ii) the odd derivatives of u;, including the first
derivative (u;.)7, the third derivative (u;aee)}, --., and the kth derivative wu; ,ox41,
where k& = (Np; — 1)/2. The numerical algorithm applied to calculate the even
derivatives of u; in the time-marching calculation is different from that for solving
the odd derivatives of u;.

The calculation of the even derivatives of the primary unknowns is based on
enforcing space-time flux conservation. Which is accomplished by integrating the

space-time integral equation defined in the original CESE method|5]. Unlike the

conventional finite-volume methods, the flux conservation is not formulated based on

45
DISTRIBUTION A
Approved for public release;
distribution unlimited.



the use of the Reynolds transport theorem, which is only a special case of the more
general space-time flux integral employed in the CESE method.

For the high-order CESE methods, the space-time flux conservation is enforced
based on the original equations as well as the additional space-time integral equations,
which must be obtained by first differentiating the original hyperbolic PDEs in space
and time and then applying the Gauss divergence theorem to the new PDEs.

On the other hand, the odd derivatives of the primary unknowns wu; at the so-
lution point (x;,¢") are calculated based on a central-difference-like procedure. For
example, one the primary unknowns (u;)} are calculated, its first derivatives (u;.)?
are calculated through a central differencing procedure. In a similar fashion the third
derivatives (umm);‘ can be calculated by central differencing the second derivatives
(Ui z2)}- In the following 2 sections, a general high-order CESE c-7 scheme for solving

a system of one-dimensional N, hyperbolic PDEs is developed.

2.3 Even Spatial Derivatives of u;

The key idea in calculating the even spatial derivatives of u; in the time marching
calculation is to have additional equations for the higher derivatives. For example,

the following equation will be used as an additional PDE with u; ,, as the unknown:

aui,:px afl,mm
+ = Sizx,
ot ox ’
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In general, the above equation can be understood as an extension of the original
model equation, Eq. (2.1), by differentiating it with respect to x twice. Here, w; 4,
is the new primary unknown and the new equation is a first-order PDE. In general,
all additional equations for the even spatial derivatives of u; can be cast into the
following form:

0ui,x21 X 8./:‘2',:021
ot ox

- (2.17)

where I = 0,1,...,(Ny — 1)/2. Aided by the Gauss divergence theorem, Eq. (2.17)

is recast into the space-time integral equation:

\% hi,x21 -ds = / Si,m217 (218)
S(V) \4

where S(V) is the boundary of a space-time region V, and ds is a differential surface
element pointing outward with respect to V. The space-time flux vector h; ,2r is

defined as

hi,x21 = (fi,:v217 'U/Z'7m21).

In Eq. (2.18), the Gauss divergence theorem operates in a two-dimensional Euclidean
space &, in which the independent coordinates are (x,t). The original idea of the

space-time integration used in the CESE method can be found in Fig. (2.1). To
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proceed, the following definitions are made to facilitate the derivation:

. o (Ax\" A\’

“mzaxt<7) <4) (2.19)

. RS G N AN A

fm”‘fzaxftf<7> (Z) (220)
o+ s, (Ax\' [ A\’

mzam<4) (4) (221)

where Az = ;412 —7j_1/2 and At =" — t"~1. In order to write the equations more
compactly, any local constant enclosed within a square bracket will be evaluated at
the location specified by the subscript and superscript written on the enclosing square

bracket, e.g.:

Ax At Ax A"

(uz,wx)? + (uz,mmm)?T + (ui,:pxt)? Ui xx + ui,mmm? + ui,mmt?
J

Applying Eq. (2.18) to the CE shown in Fig. (2.4) yields

j{ (-u;ﬁmzu fi’fxzz) (dr, dt) = sj o1, (2.22)
S(V)

where I =0,1,2,...,(Ny —1)/2.
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To find the even derivatives at the new time level Eq. (2.22) is integrated over each
line segment in Fig. (2.4). The sign convention used for the integration is counter-
clockwise positive. A detailed derivation will only be provided for the first two line

segments, AB and BC'. For all other just the resulting integration will be provided.

Tj—1/2
/ <—U/;-kxz,fl :EZ) (dx dt) / —'U/;kxzdx
AB ’ T, ’

J
NMZ

Ti=1/2 n a
= / ' (ui,m“+z>j (ZL’ — ZL’j) dx
Ny —Z Ti_1/2
= — Z uZ xa+z . / (1’ — gjj>adl'
! T

J

Az N2 1)e2e wl 4\?
Y 2_: (a+1) (.302); (A:B)

where Z is any even derivative, e.g. Z = 0,2,4,6,..., Ny; — 1. Note that since x
is the only dependent variable all of the other terms are removed from the integral.

The resulting integration for the BC' line segment is:

tn
/ (=t fiaz ) - (du,dt) = / ot
BC ’ th—1/2
Nu-7 4 .
= Z,74a) . — "
/ S (i) e (6= )
tn—1/2 =y @
Ny—-2 1 12 tn a
o n— n—1/2
== > a(fz-,xztm)j_m/ <t—t /> dt
a=0 * t7l—1/2

__ENM_ZL(]: B s 4
T2 & (a+ )V A )
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The same procedure is applied to the other line segments: CD, DE, EF, and FA. It
should be noted that it is not necessary to integrate (uz);1 over the line segment DA
because it is an internal surface and is canceled out when (u;)} over the line segment

)

AD. The result of the remaining line integrations are:

L Ag MU= e w4V
/CD (e fioz) - (daydt) = =57 ; a1 ()i (Az ,
/D ) <—u f;sz) (de, dt) = —A; Ngz ((;1+)12)' (tizoe2) 1o (ﬁz) ’ ,
[E ) (<uion Iy ) - (o, dt) = A; Ng . i 57 raeessa) 1201 (:‘x) ’
/F (s fias) - () = 5 sl . - 1 (i) (At) )

By summing over all line segments the value of , ,z is calculated at the new time

step and is equal to:

1 1 gk
U S .
(tmz7 ) Ax //sz + 2 ; (k+1)!
|:umik+z + —fmfsz:| + |i(_1>kumfk+z - —fmisz:| -
Az i—1/2 Azx j+1/2
NM;ZA -
(tpgrs)’
|
— (2k 4+ 1)! J
(2.23)

Equation (2.23) provides an explicit formulation for all even spatial derivatives. As

long as the higher even derivative are calculated first the last term on the RHS will
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have already been calculated. For example, in a fourth order accurate scheme the
conserved variables are w;, u; ;, U; 52, and u; z3. In this case (umz);2 will be calculated
first followed by (u;)j. It should also be noted that the x is absent from the source
term. This is because the source term treatment varies when dealing with different
flow physics and may not require a Taylor series expansion. Another interesting
feature in Eq. (2.23) is that when the integration over surfaces AB and F'A are
summed together all odd derivatives cancel out. This in turn allows for all even

derivatives to be calculated first followed by all odd derivatives.

2.4 0Odd Derivatives

In order to compute the odd derivatives a central differencing approach is applied
following the c-7 scheme. There are two possible formulations for the odd derivatives
(i) the standard c-7 scheme which is applicable if there are no discontinuities present
and (ii) a weighted ¢-7 scheme which is used if there are discontinuities in the flow
field.

To mitigate the dissipation as the local CFL number decreases the central differ-

encing is applied at points PT and P, where P* are points located at

Ax Az

T (P+) =Xy + (1 +T)T = I‘j+1/2 - (1 — T)T, (224)
Az Az
T (P_) :$j—(1+7')7:$j_1/2+(1—7')7. (225)

Where 7 is a function of the local CFL number.
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First let (uf _;)7(P*) be the Taylor series expansion of (uzr)}, from (z;,t")

to x(P*). Then (uyz+1)} may be solved for by subtracting (u* _;)"(P~) from

ma!

(u},-1)5(PT) resulting in

Nyp—1—1
(U35 )7 (PF) = (ugar)j (P7) - 1 .
(umJEI*l)T‘L = S - (um:EZk*l*I)n(l + 7—)2 )
J 2(147) p (2k + 1)! J

(2.26)

for I =0,2,4,...,Nyy—land m=1,2,..., N,

Since not all of the Taylor series coefficients used in calculating (u* _,)(P*) are
known it is approximated by u/ _;(P¥). Where u/ _,(P*) is the Taylor series ex-
panded from (49 m-1/2) to x(P*). In this Taylor series expansion the value of u;

at points PT are calculated from values at the previous time step.

Ny—1-1
U/, *I(P—i_) _U/, *I(P_> 2 1 2k‘
(Umil+1)n = nz me — 7(umf2k+l+1)n(1 + 7‘) ,
J 2(1+71) —~ (2k+1)! J

When discontinuities are present in the flow field a re-weighting and or limiting
of the derivatives is required. The first step in computing the odd derivatives is to
apply a weighting algorithm and then check for smoothness. If the results are not
found to be sufficiently smooth a limiter, such as minmod, is applied which further
suppresses dispersion.

In|3| Chang showed that the previous derived weighting schemes originally pre-

sented in[61] are applicable without modification to the new high-order CESE scheme.
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For brevity only the W1 scheme from|61] is presented. First the function W is given

as

||
Wi(l'_,l'+,a) = m (227)

To remain stable in the presence of discontinuities « is an adjustable parameter > 1.

The odd derivatives are now defined by:

where
(Wi )1 = W (U o1 sz 1, @), (2.29)
with
’ljbmf$1 = :l: Cumi]il)-? _ U/i7x171(P$)7
1+7
1

ufm’ch: = ii((ui,m”l)? - (u;,xIﬂ)?JFl/Z)v

where (u'; ;1-1), 5 is the Taylor series expansion from (12,7 —1/2) to

(Tjx—1/2,10).
For solvers that are greater than fourth-order it was found that the weighting

scheme was not always enough for stability. In these cases a smoothness criteria was
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established and the minmod limiter was applied as needed. The smoothness criteria

used was
8k+1ui 45 8’%2
for k > 1 2.30
Oxk+1 k+1 0xk o ( )

where [ is an adjustable parameter on the order of 0.1 or 0.01. If Eq. (2.30) is
found to be true then the minmod limiter was applied. This smoothness check was
applied to all derivatives, even and odd, greater than 1. This test ensures that each
successive term in the Taylor series is a correction on the previous term. When a
strong discontinuity is present Taylor series will diverge and each successive term in

the series will increases. The minmod operator is defined as:

minmod(a, b) = max(min(1, a/b),0). (2.31)

So ugk is equal to

The above equations provide an explicit formulation for the odd spatial derivatives

when discontinuities are present in the flow field.
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2.5 Comparison to the Godunov Scheme

To better understand the CESE scheme it is useful to compare it to a standard upwind
scheme. The Godunov scheme|? | was selected because it was the first Finite Volume
conserved scheme for nonlinear conservation laws and laid the foundation for current
and future Finite Volume schemes. To begin, the control volume used to determine
u(i,n+1), where i is the spatial location and n is the time step, is shown in Fig. (2.5).
In this figure the open circles are the location where the solution is stored, the solid
lines are the boundaries of the control volume and the dashed lines represent the

domain in which each solution is valid.

_______ ——— OO n+1
: Uj,n+1 HH
§f¢—1/2 fi+1/2i
DL ui,n o v

P —— O __________ : g S g .__J L Sy O"ﬁ"--

i—1 i—1/2 i i41/2 i+1
Figure 2.5: The control volume used by the Godunov scheme.
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Given this control volume an expression to determine the value of u at n+1 would

be expressed as:

Tit1/2 Tit1/2 Tt4+1
/ u(z, " dx :/ u(x,t")d$+/ f(@iz1yo,t)dt—

Ti—1/2 Ti—1/2 tn (2.33)
Tt41
/ f(@ig1/2,t)dt,
tn

where f is the flux and w is the conserved variable. It is assumed that the flux is a

function of w. This equation is commonly written as:

At
sn+l _ on Fi 1jo—F 2.34
u; u; + N ( 1/2 +1/2) ) ( )

where #; is the average value of u between x;_1/0 and x;41/0. And Fji, /s is the flux
function computed by solving the Riemann problem at the cell interface, given the
values of % on the left and right side of the face.

The difference between the Godunov and CESE schemes are apparent when one
compares their respective control volume and resulting integral equations. The most
obvious differences are that the CESE scheme uses a staggered mesh and requires
two separate time integration to progress one full time step. Another major differ-
ence is that the Godunov scheme requires the solution of a Riemann problem when
integrating along the boundaries [(z;11/2,t"), (2;x1/2,t""")]. This is due to having

two different values of u, i.e. u; and ug, on either side of the boundary of the control
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volume. Whereas the CESE scheme has only one valid expression of u along each

boundary of its control volume or CE.

2.6 Numerical Outline

To summaries the numerical procedure used is as follows:

1. Calculate all of the Taylor series coefficients for the flux and the temporal
derivatives of the conserved variables at (n — 1/2,j +1/2), points C' and F in

Fig. (2.4).

2. Calculate all even derivatives using Eq. (2.23), starting with the highest un-

known even derivative.

3. Calculate the highest odd derivative via Eq. (2.28)

4. Check for smoothness using Eq. (2.30) and apply minmod, Eq. (2.32), as needed

5. Repeat steps 3 and 4 until all odd derivatives are found

6. Check the even derivative for smoothness, Eq. (2.30), and apply the minmod,
Eq. (2.32) limiter as needed. This is done for all even derivatives except the

zero derivative, i.e. k0 in Eq. (2.32).
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2.7 One Dimensional Results

The following test cases show how the CESE method improves as the order of accu-
racy increases. The test cases used to verify the order of convergence are: (i) the
linear convection equation with a source term, (ii) an acoustic wave modeled by the
linearized isentropic Euler equations, and, (iii) an acoustic wave modeled by the non-
linear Euler equations. For all three cases, the order of accuracy was calculate through

the following formula:

L=y / opdz =[S 620z,

where ¢; is defined as the difference between the analytical and numerical solution
and Ax; is the grid spacing at a given location ¢. In all cases Ax is constant. The rate

of convergence is taken as the slope of the best fit line through the points (logio(Az),

lOglo(Lg) )
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2.7.1 Convection Equation with Source Term

The first test case is the linear convection equation with a source term. In this

problem the following equation is solved

du A _ aSp cos(z)

— +a
dt dx
—2m<x<2mt>0
where a and Sy are constant. Under the periodic boundary condition an analytical

solution to this problem is
u(z,t) = cos(x — at) + Spsin(z).

This governing equation contains a source terms which needs to be integrated. Since

the source term is linear an analytical solution is found that is only dependent on .

S = aSy cos(x)
// Sdx dt = aSoA; sin(z)] 715,
/ Sz dz dt = —aSy (%)2 % sin(z)[07% ..,
// Syon dx dt = (—1)"?aS, (T)% A;sm(x)ﬁi*iﬁ, forn=0,1,..., %
For the convergence tests, a = Sy = 1 and the test time was set to 2.5%, where [

is the length of the domain. In all calculations, CFL = 0.7. For these simulations the
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Table 2.1: The convergence rates for the numerical solutions of the convection equa-
tion, and the averaged, normalized time for case with varying CESE solver orders.

Order of CESE Solver

Numerical Order

Normalized Time

2
4
8
12
16
20

2.00
4.01
7.95
12.12
16.05
20.09

1.00
5.22
23.65
59.04
115.83
190.95

order increases from second to twentieth. The upper limit for the order of the solver

was set by the accuracy of a double precision variable. In other words the difference

between the analytical and numerical solution was smaller than what can be resolved

by a 64bit variable. Shown in Fig. (2.6) and Table (2.1), the actual convergence rate

agrees well with the order of accuracy of the scheme employed.
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Figure 2.6: The Ly norm of numerical solutions of the convection equation with source
term. The symbols represent the actual calculated data and the lines represent the
best-fit curves of the data.

Another important aspect to consider is whether the results from a high-order
simulation is worth the additional computational cost. To determine this the Lo
norm is plotted against the CPU time required to complete the simulation. These
results are shown in Fig. (2.7). From this plot it is easily shown that when solving a
linear convection equation with a source term that it is more numerically efficient to

increase the order of accuracy than increase the resolution.
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Figure 2.7: The Ly norm versus the computational time for the solution of the con-
vection equation.

2.7.2 Linear Acoustic Equation

The second test case uses the linearized isentropic Euler equations to solve an acoustic

wave. The governing equation is expressed as:

U= (u17u2>T = (pv U)Tv

T T
a3 a3
F=1pv,—~p| =|pPcuz, —w
Poo Poo

62
DISTRIBUTION A
Approved for public release;
distribution unlimited.



where p, U, and a are respectively the density, velocity, and speed of sound. The
speed of sound is equal to \/vp/p with v=1.4. The values with a subscript oo are
mean values of the flow variables. The Jacobian matrix for the governing equation

18:

0 P
a2
Yoo O
P

Since all of the first derivatives are constant the higher derivatives are zero. This
reduces the calculation of all fluxes to a matrix vector multiplication.

Under periodic boundary conditions an analytical solution for the linearized acous-
tic wave equation is

. 2
P = Poo T P os (%(m - aoot))
a

o0

2
U =Usx + ¢ccos (?(1’ — aoot))

— [
f o .
or 5 <x<2,t>0

where n, [, and € are respectively the number of waves in the domain, length of the do-
main, and an amplification factor. For this test case poo—1, poo=7, e=1072, n—1, and
[=2. The run time was equal to 4.25t which allows the wave to propagate through
the domain 4.25 times. The CFL number is constant throughout the domain and is

equal to 0.75. As seen in Fig. (2.8) the desired order of convergence closely matches
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the actual order of convergence. Table (2.2) shows the desired order of convergence,
the actual order of convergence, and the normalized time. Figure (2.9) shows that it
is typically more efficient to increase the order of accuracy of the solver than resolv-
ing a mesh. When the L, norm is still relatively high, OD(107®) it was found that
eighth through twentieth order schemes had approximately the same computational
efficiency. The relative numerical cost was calculated by taking the average simula-
tion time per cell per iteration for multiple resolutions and dividing it by the cost of

the second-order version.

100 + ' ' - ' ' ]
107 1 o '
10_4 I~ + >< i
N X o
= 10} i . g ]
5 v
51070 + . 1
= 10710 L X - & v .
10—12 | . i
1071 L ) <> i
10-16 | A A S
0.01 0.1 1
A x
27 Order 8" Order - 16" Order
4t Order 12" Order 20" Order

Figure 2.8: The L, norm for the Linear acoustic simulation, the points are actual
calculated data and the line is a best-fit cure of the data.

64
DISTRIBUTION A
Approved for public release;
distribution unlimited.



Table 2.2: Convergence rates for the linear acoustic solver and the average normalized
time for case.

Order of CESE Solver | Numerical Order | Normalized Time
2 2.03 1.00
4 4.06 3.43
8 8.12 14.47
12 12.21 34.33
16 16.48 67.98
20 20.52 116.89
10_2 T T T T
! T e L
10 | e -
I — :
1076 L @ﬁ& Ty . 1
2 1078 — E - .
= i S Vx
S 10710 | ﬁ<> ) Y . ]
_12 — N
10 - x i
10714 B N RS N . |
10*16 ! ! ! !
0.0001 0.001 0.01 0.1 1 10
CPU time (seconds)
2nd Ordir 8th Order < 16" Order — +
A4t Ordir -+ 12t Order < 20" Order

Figure 2.9: The Ly norm versus the computational time for the solutions of the linear
acoustic wave equations.

The above cases showed that the new scheme achieved higher-order convergence

for a coupled linear wave equations.
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2.7.3 Euler Equations

In this section the higher order CESE scheme is tested for its ability to achieve higher
order convergence when solving the non-linear coupled Euler equations with a smooth
solution. The schemes ability to accurately resolve discontinuities in a flow field will
also be examined.

To show higher order convergence for a non-linear equation the acoustic equations
are solved. There are some difficulties when using the analytical solution because the
Euler solver will capture the non-linearities present in the flow field while the linear
solution does not. This will lead to increasing errors in the analytical solution as
Ax decreases. To mitigate this error, the perturbation was reduced to 107¢. For
this test case poo=1/7, poo=1, n=2, and [=4 and the simulation time is 2.5%. The
CFL number is almost constant throughout the domain and is equal to 0.8. The
convergence rates are shown in Table 2.3. Figure (2.10) shows the convergence rates
for the second-, fourth-, eighth- and twelfth-order schemes. From this figure it is
obvious that for a given mesh a higher order scheme has a lower L, norm then a
scheme with a lower order of convergence. Although if the simulation time is taken
into consideration the advantage of a high-order scheme is not as clear. These results
are shown in Fig. (2.11), in this figure the Ly norm is compared to the CPU time
required to complete the simulation. With the exception of the first run all high-order
schemes out performed the second-order scheme. Overall the fourth- and eighth-

order scheme tends to be the most efficient schemes. This is in contrast to the linear
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schemes where it was always more efficient to use a high-order scheme then to use

a more refined mesh. This was most likely due to the increased computation cost

associated with flux calculation.

Table 2.3: Convergence rates of the numerical solutions of the convection equation,
and the averaged, normalized time for case with different order of accuracy.

Normalized Time

Order of CESE Solver | Numerical Order
2 2.00
4 3.97
8 7.48
12 11.96
67

1.00
2.84
12.40
32.30
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Figure 2.10: The L, norm of the numerical solutions of the Euler solver for solving
the acoustic waves.

68
DISTRIBUTION A
Approved for public release;
distribution unlimited.



10_5 F T T

106 _ N X < ]
1077 | X + 1
é : \\7K ) N
2 1078 + o . ) ]
QN *

1079 [ . ]
10710 | s ]
10-11 L . ,

0.0001 0.001 0.01 0.1
CPU time (sec)
2" Order 8" Order
4" Order — ~ 12" Order =

Figure 2.11: The L, norm versus the computational time for the solution to the
non-linear Euler solver.

Next the high-order CESE methods ability to accurately resolve shocks and con-
tact discontinuities is demonstrated. To accomplish this two standard test cases
where run. A parametric study was performed by varying both the spatial resolution
and the order of accuracy of the solver. Since neither of these simulations has an
analytical solution to compare against, a converged solution was used as a reference.
To obtain a converged solution the second-order CESE scheme was used on a very
fine mesh. To provide another source of comparison the fifth-order space third-order
time monotonicity preserving (MP53) method [69] was also used.
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The first test case is the Woodward’s blast wave problem|70]. Woodward’s blast
wave problem consists of two shock waves of different strengths heading towards each
other with wall boundary conditions. The simulation ran for a non dimensional time

of 0.47 and the initial conditions are

0, 1, 10%) 0<x<0.1

(w,p.p) =94 (0, 1, 1072 0.1<z<0.9

0, 1, 10 09<z<10

The second test case is the Shu Osher’s problem|71]. In this simulation a Mach 3
shock moves to the right and collides with a sinusoidal entropy disturbance moving

to the left. The boundary conditions are non-reflective and the initial conditions are

(2.629369, 3.857143, 10.3333) —1 <z < —0.8
(u, p,p) =
(0, 1+02sin(5rz), 1) 08 <2< 1.0

0.0 <t <0.47.

For both simulations « in Eq. (2.27) varies by this equation.

]. uc Tz uc TZ
a=min | = myTE 4 _ma —1/,1.0
21\ us us
mi?— mi*+
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C

. .
rz-4 approaches u £ in

mI?—"

Using this equation the value of o approaches zero as u
Eq. (2.30) was set to 0.01.

Figure (2.13) shows the results from the Shu-Osher simulation. In this figure the
CESE scheme was run at second-, fourth-, sixth-, and eighth-order and at a resolution
of 400 and 800 uniform cells. For comparison each density trace compares one of the
CESE simulation to the MP53 scheme. The black line denotes a converged solution
obtained by running the second-order CESE scheme with 3201 uniform cells. For the
lower resolution case the MP scheme outperforms the second-order CESE scheme and
compares favorably to the fourth- and sixth-order scheme. The eighth-order CESE
scheme also compares favorably to the MP53 scheme except at the shock where the
CESE scheme has some dispersion. For the case with 800 cells the resolution is high
enough that the difference between the different various simulations is not apparent.
Again, the exception to this is that the eighth-order CESE simulation has more
dispersion around the shock than the other schemes.

The results for the Blastwave simulation are shown in Fig. (2.13). For this sim-
ulation the CESE scheme was run at an second-, fourth-, sixth-, and eighth-order.
These simulations where run at a resolution of 400 and 800 uniform cells. The black
line represents a converged solution obtained by the running the second-order CESE
scheme with 20001 equally spaces cells. For this figure each plot compares the CESE
results to its next higher order of accuracy. For example the top plot compares the

second-order to the fourth-order and the next one down compares the fourth-order
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to the sixth-order and so on. For all simulations the shock was resolved with one
or two points with no noticeable dispersion. For the 400 cell case the resolution of
the left side contact discontinuity saw no noticeable improvement whereas the right
side contact, located between 0.75 < x < 0.8, features saw a continuous improvement
from second- to fourth- to sixth-order. On the other hand the eighth-order CESE
simulation has more dissipation around the right side contacts than the second-order
simulation. The simulations with 800 cells have some interesting results as well. For
example the results for the fourth-order CESE scheme are by far worse than the re-
sults from the second-order simulation. But the sixth- and eight-order simulations
slightly out perform the second-order simulation. The poor results from the fourth-
order simulation could be caused by switching to the minmod limiter too early which
could be rectified by using a more aggressive weighting scheme.

In summary the results from the convergence test cases showed that the CESE
scheme is able to achieve the desired order of accuracy for both linear and non-linear
simulations. Furthermore, it was shown that it was always more computationally
efficient to increase the order of accuracy than to add more cells for linear systems.
For the Euler equations the fourth and higher order solvers where more efficient than
the second-order CESE solver. When comparing the fourth and higher order solvers
the efficiency of the solvers was not apparent until higher resolutions. The results
from the Blastwave and Shu-Osher simulations showed that the high-order CESE

solvers are able to accurately resolve discontinuities while providing accurate results
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in smooth regions. Furthermore, this was accomplished without using any physics

specific treatment. This makes these schemes more portable to new physical systems.
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Figure 2.12: Plots of the density profiles of the Woodwards blast wave problem. The
converged simulation was done by using the second-order CESE with 20001 points.
For better presentation, only a subset of the domain is shown in these plots.
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Figure 2.13: Plots of the calculated density profiles for Shu and Osher’s problem.
Each plot has a different spatial resolution. The converged simulation was done by
using the second-order CESE scheme with 3201 points.
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CHAPTER 3

TWO-DIMENSIONAL CESE

This chapter details the derivation of the two-dimensional high-order CESE scheme.
The equations derived in this chapter are valid for any order of accuracy and for
both triangular and quadrilateral meshes. To begin, the two-dimensional hyperbolic

equations are cast into the following vector form:

ou oF* OFY
a5t o +a—y_0 (3.1)

where U is the unknown vector and F*¥ is the flux vector in the x and y direction,
respectively:
)T

U:(Ul,UQ,...,Ui

Y

k) b b} T
FoV = (f70 7 50
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The superscript T' denotes transverse and m is the number of governing equations in

the system. The hyperbolic equations are cast into a divergence-free format:

V-h; =0, (3.2)
where h; = (fZ, f/ u;)" is the space-time flux vector and ¢ = 1,...,m. Here, the
divergence operates in the three-dimensional Euclidean space E3(x,y,t). Aided by

Gauss’ theorem, Eq. (3.2) becomes a surface integration of the space-time flux vector

hii

7{ h;(z,y,t) - dS = 0. (3.3)
S(R)

where dS = ndo is a surface element with n as the unit normal vector pointing
outward of the three-dimensional space-time region R and do as the differential area
as a part of S(R), i.e., the surface of R. The CESE method is designed to integrate
Eq. (3.3) in the space-time domain.

The rest of this chapter is organized into the following sections: (1) Discretization
of the mesh and governing equations, (2) Flux and temporal derivatives calculations,
(3) Two-dimensional space-time integration, (4) Two-dimensional central differencing
procedure, (5) An outline of the steps required to progress the dependent variables

to the next time step for a fourth-order accurate scheme, (6) Test cases.
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3.1 Two-Dimensional Discretization

The geometry of CE and SE in a high-order CESE method is identical to that of
the original two-dimensional second-order CESE method|59]. For completeness a
full definition of these elements is defined below. Wherever possible the notation
used by Wang and Chang[59] is used during the development of the two-dimensional
high-order CESE scheme.

To begin a review of the CE for a two-dimensional system will be reviewed. As a
reminder the primary purpose of the CEs are to enforce flux conservation. As such
the CE are required to encompass the entire space-time domain without overlaps or
voids. Consider mesh point (j,n) where j is the cell id and n is the current time step
number. Cell j has several neighboring cells and are denoted by j, where r = 1, 2, 3 for
a triangular cell and r = 1,2, 3,4 for a quadrilateral mesh. Every cell is associated
with three or four Basic CEs (BCEs) which forms a Compound CE (CCE). The
number of associated BCEs depends on the cell type. Three for triangular meshes
and four for quadrilateral meshes. A BCE is formed by taking the cell center of cell
7, the two vertices associated with a single face and the neighboring cell associated
with the same face. These points forms a quadrilateral in the x,y plane, next this
plane is extruded in time for a distance of A¢/2. This new shape is a box in in the
three-dimensional space-time domain. It is important to note that the type of mesh
only affects the number of BCEs associated with a single cell and does not impact

how each BCE is formed it. As an example consider the simplified triangular mesh
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shown in Fig. (3.1). In this figure the solid lines denote the boundaries of each cell
of the imported mesh. The vertices are denoted by an open square and have the
labels: 2, 4, 6, 8, 9 and 10. The center of the triangles denoted by an open circle and
labeled as points 1, 3, 5 and 7. Originally the center of the triangle was defined as the
centroid but some recent studies has shown that the incenter provides better results.
The solution points are denoted by a cross and are labeled 1%, 3%, 5%, and 7*. The
projection of the BCE onto the z,y plane are denoted by the doted line and are made
up of the points: {1,2,3,4}, {2,5,6,3} and {3,6,7,4}. The full three-dimensional
BCE is shown in Fig. (3.2b). The solution points are of critical importance to the
CESE scheme and is defined as the centroid of the CCE. To determine the solution
point associated with cell j let S, be the area of the bottom face of the BCE, e.g.
points {1,2, 3,4}, also let X,Y be the center of the same quadrilateral. With these

definitions the centroid of the CCE is:

N face N face N face

N face
Z STXT = Tcen Z Sr & Z Sr?r = Ycen Z Sr
r=1 r=1 r=1 r=1

where N face is the number of faces on cell j.

The second element that needs defining is the SE. As a reminder the primary
purpose of the SE is to define the region in which the Taylor series expansion of each
conserved variable is valid. As such the SEs may not overlap but are not required to
fill up the entire domain. A SE for a triangular cell is shown in Fig. (3.2a).In this

figure the SE includes three vertical rectangular surfaces, i.e., [J 3'2'2”3", [0 3'4'4"3",
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0 3'6’6”3"”, and one horizontal hexagonal plane defined by points 125674. Where [
servers as a reminder that the points are coplanar and make up a single face on the
CE. These 4 planes intersect at point 3. On these four planes, the primary unknowns
u; and the fluxes f"Y, with i = 1,...,m, are discretized by a Taylor series expansion
with respect to point 3. Another important feature of the SEs is that they span an

entire time step whereas the CEs only span a half-time step.

Figure 3.1: A schematic of a triangular mesh for the fourth-order CESE method. The
cell vertices are marked by squares. The circles are the centroids of the triangular
cells. The crosses indicate the centroid of the CCE, i.e., a hexagonal region defined
by points 125674. Point 3* is also a solution point.
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Figure 3.2: The SEs and CEs associated with point 3 (or 3*). Mesh points in the
previous time step is denoted by an apostrophe. Mesh points in the next new time
step is denoted by a double apostrophe.

The next step in the discretization process is to express the conserved variables
and fluxes as a Taylor series expansion anchored at the solution points. These Taylor
series are expanded in both space, x,y, and time, t. For example a third-order Taylor

series would be used in a fourth-order accurate CESE scheme and would be expanded
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as:

wi (2,9, 8) =(a)j + (Wie) FAT A ()7 AY + (i) AL+ (i 00)j ATALF
1
(i)} AYAL+ 5 (1100} D7+ (11 )} Ay + (i)} O+

(i)} + (i)} | Awry)+

1
o [ ()} A0 + (0 )} AY + (00) ] A +

1 n n n

6( [(ui,mcy)j _l' (uL:cyx)j + (ui,y:c:c)j:| AIQA?/‘F

[ i)} + (i)} + (5000} | Ay?A7) +

1

5[(ui,mt);‘A9§2At + (ui,m);‘AzAtz + (uivyyt)g‘AyzAt—l—

(Ui,ytt)?AyAtz] + (ui,xyt)?AxAyAt

The subscript 7 denotes the solution point j and the superscript n denotes the time
step. In Fig. (3.2), point (j,n) is point 3*. Thus (x;,y;,t") is the space-time co-
ordinates of point 3*. The distance to an arbitrary location (z,y,t) inside the SE
from the solution point (z;,y;,t") is denoted by Az = x — z;, Ay = y — y;, and
At =t —t". If the flow variables u; and their spatial and temporal derivatives are
known at (z;,y;,t"), then the value of w; at any location in the SE is calculated by
Eq. (3.4).

For an arbitrary space-time location (z,y,t) inside a SE, the value of u; . (x,y,t)
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are calculated by the second-order Taylor series:

uf (2,9, 1) =(Win)] + (Wiae)] AT + (Uiay)]AY + (Wi )] At+
1
5 [(uz,:pmc>?Ax2 + (ui,:pyy>?Ay2 =+ (ui,:ptt)?Atz} +
1 n n n n
5 [(ui,xacy)j + (ui@yx)j] A$Ay + [(ui,mct)j AZL’ + (ui,xyt)j Ay] At

(3.5)

Similarly, the values of u;, and u,; are expressed by a second-order Taylor series.
To proceed, for an arbitrary location (z,y,t) in a SE, the values of the second
derivatives of u;, i.e., U; g0y Ui yy, Wite, Wizy, Wiyz, Uiz, and Uu; 4, are calculated by the

first-order Taylor series expansion. For example,

All third derivatives of u;, i.e., Ui zoz, Wiyyys Wigzys - -+ Wittts Witta,-- - €bC., remain
constant for all locations inside a SE.

The alternate, or symmetric, rule of differentiation states that the order of differ-
entiation can be changed, e.g. 9*u/(9zdy) = 0*u/(dydx). In this investigation the
alternate rule of differentiation was not applied across all derivatives. For example,
at point (2j,v;,1"), (Uiay)] # (Uiye)7. These two terms are stored separately in
the computer code. However, for derivatives involving differentiation with respect to

time, the alternate rule is employed. For example, it is assume that (u; )} = (W)}
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and (Ujqzrt)7 = (Uie)}. This decision was spurred by many factors. The first was
shown in Chang’s 2010 paper, where it was shown that the symmetric property of
differentiation could not be applied to odd derivatives|3]. Another factor that lead to
this decision was that the spatial and temporal derivatives evaluated at the solution
point are real numbers. A third reason was the way in which the values with the same
number of x and y derivatives where averaged together. The final reason was that it
was unknown if the even derivatives would have to be weighted in a similar fashion
as in the one-dimensional CESE scheme. Due to all of the reasons it was decided to
not apply the symmetric property to any of the conserved variables, e.g. u, Uy, Uz,
Uz, Ugys - - - -

In general, at an arbitrary location (z,y,t) inside a SE, the value of w; is repre-

sented by the Nth-order Taylor series expansion written in the following form:

N N—aN—-a—b n
gatbrey, Az® Ay Ate
u; (x,y,t) = : 3.7
ey =22 > <0x“0y"0tc a Bl (37
a=0 b=0 c=0 j
where terms with the same values of a,b,c are averaged together, e.g. g;g; =

0.5 (umy + ulyx) Moreover, at an arbitrary location (z,y,t) inside a SE, the value

of of all derivatives of u; are succinctly expressed by the following Taylor series ex-

pansion:
O%u;(z,y,t) igA ot 0P u; N Ay Ate (3.8)
Doyl otk L L Qrl+agyl+botK+e al bl '
= — c=0 j
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where C =14+ J+ K, A=N—-C,and B=C+a+b+c. Equation (3.7) is a special
case of Eq. (3.8) with A= N and C = 0.
Similarly, the fluxes f¥ and their derivatives inside a SE are also discretized by

the Taylor series expansion:

OCLEV (1) om e R o7 " Azt Ayt At
=> 5 (3.9)

Ox! 0y’ Ot xltagy/+botK+e | al bl ¢l
J

where C' and B have the same definitions as that in Eq. (3.8). When C' = 0, Eq. (3.9)
is the Taylor series expansion of the flux f7¥ itself. The coefficients of the Taylor

series shown in Eqs. (3.8) and (3.9) are to be solved in the time marching calculation

of a high-order CESE method.

3.2 Two-Dimensional Independent Variables

In this section, it is shown that not all the coefficients of the Taylor series shown in
Egs. (3.8) and (3.9) are the dependent variables in the context of the CESE method.

Through the derivation it will be shown that the primary unknowns are the conserved

n

variables (u;)} and their spatial derivatives terms, e.g., (wiz)}, (Uiy)}, (Wizy)Ts -

I
etc. All derivative terms of u; involving temporal differentiation as well as all fluxes
(f“’)? and their spatial and temporal derivatives are not primary unknowns and are

expressed as functions of the conserved variables and their spatial derivatives.

The first step is to express the fluxes and their derivatives as functions of the
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conserved variables and their derivatives. Two primary method to do this where used
in the investigation. The first, listed below, uses the Jacobian and its derivatives
and is not tied to any particular governing equations. This generality makes it ideal
for this derivation but the method becomes more complex as the order of accuracy is
increased. The other method, detailed in Chapter 5, directly evaluates the spatial and
temporal derivatives of the fluxes without the use of a Jacobian matrix. This method
is unique for each set of governing equations but is expandable to higher-orders with
little effort. It is also more computationally efficient then the Jacobian method.

The Jacobian method begins by applying the chain rule, to the first derivatives

of f;

OFFY = Of u
8\111 n —1 8ul 8\1117

(3.10)

where Uy = z,y, and ¢. On the right hand side of Eq. (3.10), 9f"Y /0u, is the Jacobian
matrix, which is readily available for any two-dimensional system of equations. For

the second derivatives,

afy 0%y Y 0wy Ou,
a\p a\pz Z D, OV, ;; 0ul0up 00, 0T, (3:11)

where (U, Uy) = (z,2), (y,vy), (t,1), (x,y), (y,x), (x,t),and (y,t). As a part of the sec-

ond term on the right hand side of Eq. (3.11), 8* Y /0u;0u,, is a three-dimensional
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matrix, which is readily derived from the governing equations. For the third deriva-

tives,

IR < X0 A

OV, V2005 = Oou; OV,0W50V5
ii 0%u Ouy n D®u Ouy, n 0w Ou, N
=1 p—1 8”18Up 8\1118\112 8\:[’3 8\:[’18@3 8\112 8\:[/28\;[13 8\111
zmzzm:i BFY Oup duy, Ouy,
i Ou0u,0uy OV, OWy OW5’

(3.12)

where (U1, Wy, W3) = (2,2,7), (y,9,9), (t,1,1), (z,9,1), (y,2,1), (z,2,9), (z,y,7),
v,z 2), (v, 9,2). (y,2,9), (x,9,9), (4,9,1), (z,2,1), (y,1,¢), and (z,,1). As a part
of the last term on the right hand side of Eq. (3.12), &*f"Y/0u,0u,0u, is a four-
dimensional matrix, which is readily derived based in the definition of f;"¥ as functions
of u;. Aided by Eqgs. (3.10-3.12), all spatial and temporal derivatives of f;" are related
to the derivatives of w;.

The next step in this derivation is to demonstrated that all of temporal derivatives
of u; are functions of the conserved variables and their spatial derivatives. This will
be accomplished by first relating the temporal derivatives to the spatial derivatives of
fi7Y. Then, through the relations derived previously the derivatives of f;"¥ are related
back to the spatial derivatives of w;. This is procedure is known as the Cauchy-
Kowalewski procedure. Essentially, the approach uses the governing equation and its

derivatives to relate the temporal derivatives of u; to the derivatives of fY. First,
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the original governing equations:

ou;  off Off
ot Oz oy’

(3.13)

is differentiated with respect to x, y and ¢ yielding

%u; - _82fix . 02fiy
Ox0t Oxdxr  Oyox (3.14)
82%’ o _azfix . a2fiy
oyot — Oxdy  Oydy’

and

Pu;  Pfr Pf
o2 0x0t Oyot

off ow  J af! ouy
Z 8ul ot Z 0ul 8t
_ 90 (9ff aoff | off aff 1ofr | off
B 0:)32 oy [&B + oy + ay; Ou; | Ox * oy (3.15)

ofr [ O*fF 82fl L P O ofr  off
Z oy ( 02 8y8x ZZ 8u18up or \ Ox * dy

I=1p

off [ O*ff 02fl T~ OAfY Ow [(OfF  Of)
+lz:; ouy (&x@y + ZZ 0ul8up0—y < ox + dy )

=1 p=1

The third derivatives are found by applying 9% /022, 9% /0y?, and §? /0x0y to Eq. (3.13),
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which results in

Pu,  Pfr P

0x20t Oz 0120y’

T (3.16)
o2t oy20x  Oyd’ '
Pu; P PfY

0xoydt — 0x2dy  Oxdy?

Aided by Eq. (3.15) and the chain rule, the third derivatives of u; containing two

temporal derivatives are expressed as:

8311/7; o

ooV
m&x o3 fr o3 mmax8 92 fr o2 1Y
Z [ Ji I n ZZ fr Ou, fi N f .
— Ou; \ 0xdx0v¥Y 8y8x8\11 = = Ou0u, OV \ 0xdx ~ Oyox
zm:zm: O fr % O fi N a2fly N 9% (aflx N afly) .
— Ou0u, | Ox \ 0x0V  Oyov OrovU \ Oz By
iii Ofr 0w Ou, (afl ol ) +
— = = Owduyduy Ox OV \ dx

=1 p=1
Zm: zm: 2 fiy % 02 flm . 02 fly . azul o flm N o fly N
OuOu, | Oy \ 0z0¥  Oyov oyov \ Ox oy

Zii Ff Owduy (Off N aff
du0u,duy Oy OV \ oz 0Oy )’

p= Oy
i 83 x 83 mom 82 ) 82 T 82 Y
Z fz f fl + Z Z fz Up fl + fl +
Ou; \ 0xdyov 8y8y8\If 0w Ou, OV \ 0z0y ~ Oydy
0

(3.17)

where W is either x or y. The third temporal derivative of a flux term is expressed
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as:

3. 92

03t ot? \ Ox dy (3.18)
o P
C Ox0t2 Oyot?’

PPu; o (ofr off
-n (D

The derivatives on the right hand side of Eq. (3.18) can be expressed as a function of

spatial derivative terms only. Aided by Eq. (3.12), Eq. (3.18) is expressed as:

Pu; B Zm: afF Py _0f2-y Py
N Ou; Oxot?  Ouy Oyot?
=1 ~——

~——
Eq.(3.17)¥=z Eq.(3.17)¥=y

B ii 0* f 5 Puy Ou, N 0*uy Ou,,
Ou;0uy, Oxot ot ot? Ox
N~ N~
Fq.(3.14) Fq.(3.13) Fq.(3.15)
(3.19)
B zm:i 02 fY 5 OPu Ou, 0%y Ou,
== Ou0u,, Oyot \0}5_/ ot? dy

——
Eq.(3.14) Ea.(3.13) Eq.(3.15)

_iii( Ofr ou, P 0ul>0up0uq

duduydug Ox  OwOupdu, dy | Ot ot

Eq.(3.13)

In Eq. (3.19), the temporal derivatives are replaced by the previously derived equa-
tions as indicated in the equation. This method is expandable to any desired order
but as evident in the derivation each successive derivatives becomes more complex.

In general, the additional equations derived from the original model equations are
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cast into the following form:

80”1’ acfz’w 8Cfiy (3 20)
0xToy OtK — Ol t1gy otk -1 §alyl+19tK -1’ '

where C =I1+J+K, K=1,2,...,N,J=0,1,..., N—-K,and I =0,1,..., N—K—
J. The procedure outline above is recursive and is extendable to higher derivatives
of u;.

To recap, all temporal and spatial derivatives of f;"¥ are expressed as functions
of the conserved variables and its spatial and temporal derivatives. Further more all
temporal derivatives of the conserved variables are explicit functions of the conserved
variables and its spatial derivatives. This is achieved by using (i) the additional
equations derived from the original model equations as shown in Egs. (3.16-3.20),
(ii) the chain rule and the Jacobian matrices as shown in Eqs. (3.10-3.12). As a
results of this formulation the primary unknowns of a two-dimensional fourth-order

CESE scheme are easily determined and shown in Table 3.1.

Table 3.1: Primary unknowns of the two-dimensional, fourth-order CESE method.

Even derivative variables Odd derivative variables
uz)? ul,m)j (u%y)]
(

S

N

8

<

< -3
N e e N
S3N.3N.3%.3

NN N N N
S
<
8
<
S 3N IS IS s
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3.3 Two-Dimensional Space-Time Integration

In this section the original model equation, Eq. (3.3), is integrated over the CCE to
calculate the primary unknown (u;)? at the solution point. Due to the higher order
polynomials in the Taylor series the integration over the CCE is more complex than
the original second-order CESE method.

In the following discussion, the archetypal CCE and the solution point 3* as
shown in Figs. 3.1 and 3.2 will be used. The integration over the CCE associated
with point 3% includes the following three steps: (i) the space-time flux through the
six side surfaces of the CCE, (ii) the flux through the bottom surface of the CCE,
and (iii) the flux through the top surface of the CCE. The flux through the side and
bottom surfaces are calculated from the known values at the previous time step in
the neighboring cells. For example in Fig. (3.1) when updating cell 3 the solutions
at 17, 5", 7" are used to calculate the flux through the bottom and side surfaces.
The apostrophe symbol denotes the previous time step and the symbol x denotes the
solution point. Note that point 1% is different from point 1. Point 1’ is the centroid
of the hexagonal surface and point 1’ is the centroid of the triangle. The calculation
for fluxes through side and bottom surfaces are explicit. The flux through the top
surface is a function of the solutions at the new time level. Even though the flux
through the top surface uses the current solution the space-time integration remains

explicit as long as the unknowns are calculated in the correct order.
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3.3.1 Two-Dimensional Side Integration

The mesh stencil of the fourth-order CESE method is identical to the second-order
CESE method [59]. Figure (3.3) shows the side plane surfaces associated with the

solution point at (aqx, y;x, t"1/2).

Figure 3.3: Two vertical side surfaces of the CCE associated with point 3*

For a triangular mesh, there are six vertical surfaces as a part of the CCE asso-
ciated with the solution point 3* located at (x3x,ysx,t™). These side surfaces are
the exterior faces of the hexagonal box shown in Fig. (3.2b). On a side surface, the
profiles of u;, f¥ and f/ are described by a Taylor series expansion with respect to the
corresponding solution points, i.e., point 1, 5% and 7% located at (zyx,yix,t" 1),
(s, ysrx, 1"71), and (zpx, yox, t771), Tespectively.
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Shown in Fig. (3.3), the following two rectangular surface O 12'21 and O 1’4’41
are considered. The integration of one side surface [J 1’2’21 by using the Taylor series
expansion with respect to point 1’ located at (x1/x,yyx,t"~1/?) is used to demon-
strate the procedure. In general the spatial location (z1/x,y1x) does not coincide
with (zy,y1/). First the coefficients of the Taylor series representing the fluxes are
calculated. Then the Taylor series is integrated over the side surface [J 1’2’21 to find
the flux through the surface.

The space-time flux passing the side surface [ 1'2'21 is expressed as

(£ o1 = //1/2/21 h; - ndo (3.21)

where the unit normal vector n pointing outward of CCE on the side surface [J 1’221
is

|y —y1), — (w2 — 11/), 0]

\/(172’ —x1)? + (Yo — yl’)2'

and the differential area for the integration is

do = dsdt,

ds = don/(zo — 21)2 + (yor — Y1),

dt = (At/2)dB.

94
DISTRIBUTION A
Approved for public release;
distribution unlimited.



A single parameter « to represent spatial displacement is possible because the
projection of the side face [J 1’221 to the spatial domain is the line segment 12.

Aided by these definitions Eq. (3.21) is rewritten as:

(F)von = % //a,ﬁzo [(y2' —y1)(f5)" — (o — xlr)(ff’)*} dodp. (3.22)

The calculation in Eq. (3.22) depends on the known values of all the derivatives of
1Y at point 1" in the previous time step. Through the Taylor series expansion, the

value of ;¥ at (z,y) on the side surface [J 1221 is expressed as

aa-l—b—i—cfimvy) n-1/2 (x — 21x)" (y — yox )b <t _ tn—1/2>

A A—a A—a—b
() =>> (@@@@; bl

a=0 b=0 =0 1/%

(3.23)

The superscript * denotes the discretized variables. The derivatives of the flux func-
tion, i.e., the coefficients of the polynomial, are stored at the solution point 1'%
located at (z1/x, Y1, t”_l/z). Thus, the following parametric relations are generated

for Eq. (3.23):

r = a(ry — 1) + 271,

y=a(yy —yr) + yv,

At
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where 0 < a <1, and 0 < g < 1. This leads to the equation,

zy N N-—a b 8a+b+cf:c Nm(?) At c+1
Z Z Z dzedybate albl(c+ 1)1 \ 2

o az0 =0 =0 0 : (3.24)

1
/ [(z2 —z1) @+ 2y — 0] [(y2r — 1) @+ yv — le}de%
0

For easy reference Eq. (3.24) is referenced as |[Eq. (3.24)|(x1, Xa, x;, At, f*'). Equation
3.24 is easily integrated by hand or though the use of a symbolic math application
such as MATLARB. Listed below are a few sample integrations that are easily modified
to provide all integrations necessary for a two-dimensional fourth order algorithm. To
start let Az, = x; — x;, Ay; = y; —y; for @ = 1,2. With this definition the integral in

Eq. (3.24) becomes
ab—/ H AWa + AT (1 - a) ) dov,
where ¥ = {z,y} and w = {a,b}. When a = 1 and b = 0 the integration is

100 ZA%

When a=b6=1

—_

2
Ly = =5 Z Az;Ay;) +ZA:):,ZAyZ
i=1 i=1 i=1
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When a=2and b=1

21 = [ZA%ZA%ZA% + 22 Az; Ay Ax;) +
2

2 2 2
z:l =1 i=1 =1

i=1 i=1

Given these three formulas it is possible to easily derive all other integrals for a
fourth-order scheme. For example to obtain the formulation for ngo, a=2,b=0,

one may substitute Az; for Ay; in the formulation for Effl resulting in

2

2 2 2 2 2
i=1 i=1 i=1 =1 P

The calculation of fluxes through the other side surfaces is similar to that shown
in Eq. (3.22). For a triangular mesh the flux through all six side surfaces of the CCE
associated with the solution point 3% located at (x3x,ysx,t") is readily calculated:

(F})side =(F3) oo + (Fy)vaar + (Fi)s2os+
(3.25)

(F)seres + (F5)7rarar + () verer-
3.3.2 Two-Dimensional Bottom and Top Integration

To proceed the calculation of the flux through the bottom surface of the CCE lo-
cated at the time step n — 1/2 is presented. For a triangular mesh the bottom

surface is a hexagon defined by the vertices: 1'2'5'6'7'4’ listed in Fig. (3.2b). This
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hexagon is divided into into 3 BCEs: [ 1'2'3’'4’, (0 5'6'3'2’, and O 774’3'6’. The flux
through [0 1’2’3’4, is calculated based on the solutions stored at point 1’ located
at (zyx, Yy, t""1/2). The flux through O 56'3'2', is calculated based on the solu-
tions stored at point 5 located at (xs, ysx, 1"~ /?). The flux through O 74’3’6/, is

calculated based on the solutions stored at point 7% located at (w7, ypx, " Y/?).

(a) Bottom surface (b) Top surface

Figure 3.4: A part of the bottom and the top surfaces of the CCE.

To proceed the quadrilateral O 1'2'3'4’, shown in Fig. (3.4a), is split into two tri-

angles A1'3'4" and A1'2’3" in order to facilitate the integration. Since the procedures
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of calculating the flux through each of the triangles of the three quadrilaterals are

identical, only the space-time flux integration over A1’3’4’ is shown:

(5)1/3/4/ = // hz . ndU (326)
134/

Here, the unit normal vector pointing outward of the CCE on the bottom surface of
the CCE is n = (0,0, —1). Aided by the orientation of n and the definition of h;,

Eq. (3.26) becomes

(Fy)usw = — / / (w)*do (3.27)
1/2/3'4/

where (u;)* is the discretized u; profile over A1’3’4" by using the third-order Taylor

series:

A A-a §r+by,. n—1/2 )
(uy)* = Z B <8x“8yb> (= 21)" (Y — yrrx) (3.28)

The temporal derivatives are not needed in this Taylor series because all points on
A1'3'4" are at the same time step, t = t"~1/2.

For computational efficiency, the integral is analytically derived by applying co-
ordinate transformation to transform A1’3’4" into a right triangle. Let the new co-
ordinates be (£,7). The coordinate transformation from (z,y) to (£,n) is such that

at point 3', (§,m) = (1,0), at point 1', (£,n7) = (0,0), and at point 4’, ({,n7) = (0, 1),
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Thus, the transformation equation is

Xr — Ty Ty — Xy Ty — Ty/ 5
Yy —Yyv Ysr — Y Yy — Yv n
Te Ty §
= (3.29)
Ye  Yn n
3
=J
n

where 0 < § < 1,0<n<1-§ 2 =3 — Ty, Ty = Ty — Ty, Ye = Y3 — Y,
Yn = Ya — Y1, J is the Jacobian matrix of the coordinate transformation. z and y in

Eq. (3.29) can now be expressed in terms of &, n via:

T — Tq1rx 6 Ty — Tqrx

Y — Yurx n Y1 — Yrrx
Point 1’ is the solution point, where the Taylor series is expanded from. Point 1’ on

the other hand is the vertex of the triangle A1’3'4’. In general, point 1’ # point 1'%,

The determinant of the Jacobian matrix J is

det(J) = = zeyy — yyxe
— (,’L‘3/ — Qj‘1/>(y4/ — yll) — (,’L‘4/ — Qj‘l/)(yg/ — yl’)'
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The absolute value of det(.J) is twice the size of the triangle A1'3'4’.
Aided by the coordinate transformation and Eq. (3.28) the space-time flux shown

in Eq. (3.27) is expressed as

A A—a 1 aa—l—b n—1/2
(F)ygy = — Z > i ( Sz ) det(.J)
a=0 b=0 1/X

¢
// (2€ + g + Ax1)* (Ye€ + yon + Ayrx)” dédn.
0 0

(3.30)

where Ax;x = xy — xpx and Ay« = ypr — ypx. For ease of reference Eq. (3.30)
is expressed as |[Eq. (3.30)](x1, X2, X3,X;, ujq). The integral of the polynomial in
Eq. (3.30) for all combinations of a and b are readily derived. In the present study a
symbolic mathematics package is used to integrate Eq. (3.30).

In the equations that follow a few select integrals for the integral in Eq. (4.19)
will be evaluated. The integrals provided are all that are required by a fourth-order
space-time integration procedure. To start let Ax; = x; — 2%, Ay, = yi — y;x,
for i = 1,2,3. Note that the values of i are not related to the points {1,2,3} in
Fig. (3.1). Instead they represent the three vertices on a triangular surface. With

these definitions Eq. (4.19) is rewritten as:

zbgc / / H A\If%nk + AP, fk -+ A\If] (1 — Nk — fk) d&rdny,

where U = {z,y} and w = {a,b}. When a =1 and b = 0 the integral is evaluated
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as

3
1
L360 =5 D A

2

i=1
When a=0=1
113 3 3
Wt
L7 = 2 4 (Az;Ay;) + Z Ax; Z Ay;

1 i=1 i=1

Whena=2and b=1

3 3 3 3
Lo = 6_10 [Z Az; Z Ay; Z Az; +2 Z (Az; Ay Ax;) +
i=1 i=1 i=1 i=1
3

3 - 3 3 3 3
=1 i=1 i=1 i=1

i=1 =1

As with the two-dimensional side face derivation the other integrals required for a

fourth-order scheme are easily obtained through substituting. For example E%% is

obtained by substituting Az, for Ay, in the formulation of £3".
The fluxes through A1'2’3" as well as through the other sub triangles in quadri-

laterals associated with points 5 and 7’ are calculated in a similar manner. Thus the

space-time flux through the whole bottom surface of the CCE associated with point
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3% is expressed as

(Fi)bot :(E)A1’3’4’ + (Fi)A1/2/3f—|—
(Fi)ases + (F)aszo+ (3.31)

(Ey)arse + (Fi)aras .

The calculation of the space-time flux through the top surface of the CCE asso-
ciated with point 3 is similar to the flux calculation through the bottom surface of
the CCE. The only difference is that there is only one solution point, 3%, for flux
on the top surface while the calculation of the flux through the bottom surface must
use the solutions on three solution points, i.e., points 1”, 5%, and 7. To proceed,
the hexagonal area of the top surface of the CCE is divided into three quadrilaterals:
[11234,[15632, and [17436. Then each quadrilateral is further divided into two trian-
gles: [J1234 = A341+ A312, 15632 = A328 + A356, and [17436 = A367 + A374. As
such, the calculation of the flux through the top surface of the CCE is divided into
the flux through six triangles. In what follows, the calculation of flux through A134

is illustrated.

(Fi)aiza = //Al:34 h; - ndR (3.32)

where n = (0,0, 1), and h; - n = u;. To proceed, the coordinates are transform from
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(z,y) to (&,n) and have

A A—a n
1 8a+bu,
— S d 3.33
22 <8xa8yb>3x det(J) (8.33)
! -t a b
/ / (Exe + iy + As)” (Ege + myy + Ays)” dnde.
0 0

where Axs = x3 — x3x and Ays = y3 — y3x and A is the order of the polynomial,
A = 3 for a fourth-order CESE scheme. Since this equation will be referred to later it
is convenient to express it as: [Eq. (3.33)](x1, X2, X3, X;, U;e). Similar to the bottom

surface, the total flux through the top surface is

(F)top =(F3)134 + (Fi)123+
(F)s63 + (Fi)szat (3.34)

(F)736 + (F7)743-

Equation (3.34) is an implicit function of the conserved variable u; and its spatial
derivatives stored at point 3*. All the derivatives are evaluated at Point 3* and are
moved outside of the integration as shown in Eq. (3.33). As a result, the integration
in Eq. (3.33) is readily obtained by from mesh geometry. For efficiency this infor-
mation may also be stored for future use. It is evident from this equation that all
of the unknowns for the current time step are included in this equations. Due to

the definition of the CE the integral the first derivatives are null. The values of the
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first derivative are non-zero the integral over the entire CE is zero. Furthermore if
the derivatives are determined in the correct order all other Taylor series coefficients
will have been calculated thus making the space-time integration procedure explicit.
This situation is identical to that in the original second-order CESE method. The
final step requires summing the over all surfaces and solving for (u;)3x through this
equation an explicit formulation to progress the conserved variables is formulated.

-1
Ahex

()3 [(Fi)side + (F3)bot + (Fi)top] (3.35)

where (F})iop denotes the part of the space-time flux in Eq. (3.34), which is calculated

from the known second, third, and other higher derivatives of u; stored at point 3*.

3.3.3 Two-Dimensional Even Derivative Terms

This method is also used to calculate the even derivatives of the conserved variables.
Since this procedure is easily expanded to solve any even derivatives for any order
scheme, the second derivatives in the setting of a fourth-order scheme will be used
as an example. For example in a fourth-order scheme the second derivatives listed
in Table 3.1 would also be calculated using the space-time integration procedure.
Essentially, the integration procedure is applied four times to solve for: (uzm)?,

(Uiey)?s (Wiya)?, (Uiyy)T, at all the solution points in the new time level.
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To proceed, Eq. (3.16) is cast into into the following divergence-free equations:

V- hi,mm = 07 % hi,my = 07
(3.36)
V-hi, =0, V-h, —0.

where

hi,:mc = (fz'gf:c:cv f{xw’ ui,mm)v hi,my = (fz'gf:cya z‘Z{:pyv ui,ﬁl/)v
(3.37)

hi7yy = (-fz'g,cyw i%yy?uivyy% hi,y:c = (fia,:y:w il{yac’ ui,y:c)

are the additional space-time flux vectors. It should be noted that both h;,, and

2
7w and

2 . . .
Y are treated as two distinct variables.
oxdy Oyox

h; ., appear in Eq. (3.36) because ‘r;

Aided by the Gauss theorem in the three-dimensional space-time domain, the

above differential equations are recast into the following integral equations:

\%hi,mm -ds = O, fhi’wy -ds = 0,
%hmw -ds = 0, %hmlw -ds =0

The space-time integration procedure is applied four times to enforce flux conservation

(3.38)

of h; 4z, h; 4y, Dy 4y, and h; .. In the context of a fourth-fourth order scheme each of
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the second derivatives is expressed as a first-order Taylor series:

*
1,XT

U

uz XY

uz YT

Ul Yy

= Uiz + ui,mmmAaj + ui,mmyAy + ui,mmtAt

= Uj gy + Wi gyz AT + Wi gy AY 4 U 30t AL
uz,y:c + uz,yzxAx + Us yzyAy + U; y:ctAt

= Uiy + Wigya AT + Wi gy AY + U 1 AL

(3.39)

The associated fluxes are also expressed as a first-order Taylor series:

(fia)"
(fiay)”
(firge)”
(fia)

fzxx + fzxxxAx + fzxxyAy + fz:;:%ctAt
fzx +fzxyxA$+fzxyyAy+fz:;%tAt
fz :c+fzyxxA'r+fzy:cyAy+fzgﬁctAt

Y Y
fz +fzyywa+fzyyyAy+fzyytAt

(3.40)

Since these are linear equations the space-time integration procedure is nearly

identical to original second-order scheme developed by Wang and Chang|59|. Fur-

thermore, when applying these equations to the top surface as derived in Section 3.3.2

the only non-zero integration term is the second derivatives. This means that the re-

sulting integration has only one unknown and is solved explicitly. As an example the

resulting integration for each surface is provided for h; ,,. To begin Eq. (3.24) takes
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on the form

x?y
At
2
(E’7m)1'2'21 = Nii)i <

_ 1
5 fﬁm/ [(zy — 1) o+ 21 — 21x | dat
0

) 1
fi/gxy/ [(y2' - yl’) o+ Y1 — le:| da_|_ (341)
0

(Fi,mm>1’3’4’ = - det(J) (051,6;71,96"_
1 pl—t
0 0

1 1-¢
0 Jo

(Fi,mm)1’3’4’ = det(J) (05u2,$x+
1 pl—t¢
0 0

1 pl-¢
0 0

When the flux is summed over all surfaces an equation to progress u; ,, is obtained

and has the form

[(Fi)side + (Fi)bot] » (3.44)

108
DISTRIBUTION A
Approved for public release;
distribution unlimited.



It should be noted that the (F})iop is absent from Eq. (3.44), which means that the
evaluation of u; 4, is completely explicit. This same procedure is duplicated for u; 4,

U; ya, and u;,,. This same procedure is easily applied to any higher derivatives.

3.4 Two-Dimensional Central Differencing Procedure

In this section the central differencing procedure used to find the odd derivatives at
the new time step is illustrated. There are two primary methods to calculate the odd
derivatives, the CFL insensitive ¢ — 7 scheme[59, 61] and the edge-based derivative
(EBD) scheme [44|. Both method use a similar approach only differing in how they
determine the locations to evaluate the Taylor series expansion at. This section is
split into two subsections. The first derives an arbitrary order ¢ — 7 scheme, the
second derives the arbitrary order EBD scheme. Both of these sections begin by
deriving the core scheme which calculates the first derivatives and then follows up

with a generalization to higher derivatives.

3.4.1 Two-Dimensional ¢ — 7 scheme

The ¢ — 7 scheme|61| is an extension of the original ¢ scheme proposed by Wang
and Chang|59|. The motivation behind the development of the ¢ — 7 scheme was
to decrease the dissipation that occurred when the CFL number dropped below ~
0.1. The basic principles of this scheme is to take a Taylor series expansion from

the current solution point to a location at the new time step. When this Taylor
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series is written out it is evident that some of the Taylor series expansions terms
are unknown. For a second-order CESE scheme the only known values at this time
step is u;. The first derivatives, u;, and u;, are unknown, combine this with the
value of u} at the expansion point results in three unknown values. By performing
multiple Taylor series expansions to other points a system of equations is generated
that allows for the unknown values to be calculated. The rest of this subsection
provides a complete derivation required to find the first derivatives of the unknowns

using the ¢ — 7 scheme.

Figure 3.5: The stencils used for the odd derivative c-7 scheme.

The first step is to determine the location of the Taylor series expansion points,
17, 5% and 77, shown in Fig. (3.5). These points are calculated according to the

¢ — 7 scheme detailed by Chang and Wang [61]. In short this 7 parameter shifts the
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expansion point towards the solution point, 3, as the CFL number decreases. One

example function is
zj+ = 0.5(x3« + x;) + 0.5(x; — 23x )CFL

When the CFL number is 1 the z;+ = z; and when the CFL number is zero z;+ is
equal to the average value of z;+ and x;. It should be noted that the points 1%, 5
and 7T are located at the new time step. In the following derivation, the superscripts
and subscripts outside of a bracket denote the location, from where the Taylor series
are expanded and the coefficients are calculated.

Next, the Taylor series is expanded from the solution point 3* in the new time

level to points 17, 57, and 7" at the same time step:

A

A A—a n a b
n " Oy \ (e — w34)" (Y50 — )
[(ui)ﬁ]gx => Y <8x“8yb> ! T . (3.45)
3)(

a=0 b=0

where j = {1,5,7}, and A is the equal to the order of the Taylor series expansion.
For a fourth-order CESE scheme A = 3. Since the Taylor series in Eq. (3.45) uses
the values at the new time step there could be several unknown values on the RHS.
In application this is not the case as long as the primary variables are calculated in
the correct order. For the sake of the derivation it is assumed that all of the primary
unknowns with the exception of u;, and w;, are known.

Next, let [(ui);."q];”;l/2 be the Taylor series expansion from 7* at the previous half
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time step, t = t""1/2, to j* at the current time step ¢ = ¢, where j = {1,5,7}. This

Taylor series is expressed as:

Lt e\ (o ) (e — )’ (AR
[(Uz)ﬁ] :Z Z (axaaybgtc ‘ alblc! (2)
]X

(3.46)

Next, let Eq. (3.46) be equal to Eq. (3.45), i.e., [(u)? )5 = [(u:)% ]} "/? and move

the first derivatives to the left hand side of the equation to yield

(i) gx AT+ + (U y) 3% Ay+

B ez S oty " (Az+)" (ij+)b (3.47)
= |:(uz)]+:| 8xaayb . aldb )

]X

a=0 b=0

where Azj+ = 2+ — x3x, Ayj+ = yj+ — y3x and (a,b) # {(1,0), (0,1)}. Applying
Eq. (3.47) to points {1,5,7} yields three algebraic equations with two unknowns,
(tiz)5% and (u;y,)% . The next step is to group each set of equations into pairs,
ie., (1,5), (1,7), or (5,7). By grouping these equations together a system of linear

equations is formed. For example, by choosing points (1, 5) the following two coupled
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equations for the unknowns (u;.)5.« and (u;,)%, is formed:

(1,5)

AllflJr Ay1+ (ui,x)gx

Al’5+ Ay5+ (ULy)ng
(3.48)

[(w:)} }n_m _ A A <aa+bui)"X (82,2)" (Bypr)’

1+]1x a=0 £<b=0 \ 9z20yb 3 ald!
b

(5 TR (i), )

5+ 5% a=0 £4b=0 \ 9x2oy® alb!

where (a,b) # (0,1),(1,0). This is repeated for the other pairs which results in the
following possible solutions to (u; )5, and (u;y)5x:

(1,7) (5,7)

(ui x)nx (uz x)nx
/3 /3
and

(ui,y)gx (ui,y)gx

The last step of the computation is to perform a reweighing algorithm to filter three
sets of calculated solution in order obtain a solution of first derivatives capable of

capturing shock waves. The weighting scheme is

N r N r
Zr:l wrug’: : U _ Zr:l wTuZ(/ )

Ugpx = N yx = N
Zr:l Wr Zr:l Wr

where N is the number of possible solutions, the superscript (r) represents one of the
possible solutions and w is the weight associated with each solution. The previously

derived reweighing schemes from [61] and |72| are applicable to the high-order CESE
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method without modification. In this investigation a modified version of the S2

method from |72] and the reweighing scheme used in |63] was deployed. To begin let,

w, =140 (3.49)

where

2 2
95”=\/ (a2) + (u)) +e O = Maa(e? 67 ),

o=0y/CFL,

where € is a small positive number used to prevent dividing by zero. Theoretical

the absolute value used in Eq. (3.49) is not required but in practice it is possible for

Yimaz _ 1 to be less than one, which would cause the square root operator to produce

6"
a NaN error.
By comparing Eq. (3.48) with the original scheme found in [59] it is evident that
the only difference between the two equations is that a higher-order Taylor series is

used in the new scheme. This method is easily altered to find any odd derivative. For

example to find the variables u; 3., and u; 4, consider the Taylor series expansion of
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Ui 2y from 3% to j*

A A-a n
* n 82+“+bu,~ Az Ayb
Wiy = [Ui,zy T Uiy AT+ + ui’wyyAyﬁ}sX + Z Z <a$a+1ayb+1> al bl
a=0 b= 3x '
for a,b# {(0,0), (1,0),(0,1)} .

(3.50)

The first three Taylor series coefficients are listed explicitly. This is important because
the alternative rule for differentiation is not used and this will decrease the ambiguity

for the terms listed in the summation.

An expression for the Taylor series expansion from the previous time step to the

current one is:

n—1/2 At n—1/2
[(ui,xy)?+]jx = |:ui,xy + s zyx (l’j+ - Ijx) + Us, zyy (yj+ - ij> + ui,xyt? '
]X
y fi“‘i“*’ rroirey, " (w0 — )" (g3 = yp)” At°
e L\ OxetloytHote | al b! 2¢!

J

for (a,b,c) # {(0,0,0),(1,0,0),(0,1,0),(0,0,1)}.

(3.51)

By applying the same procedure to u;,, that was used for u; a solution for u; ;.

and u; gy, is derived:
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B (1,5)

Aler Ayl+ (ui,:pym)gx
Azsr Ayse | | (Uigyy)sx
—1/2 A A_ 24a+b,, o (Az, ) (Ay b
[(Ui,my>?+y;x - (Uz‘,wy)gx - Za:O b:Oa <8§a+16y§f+1>3x ( = )a!lgl ﬁ)
—1/2 A A— 2+atby, n Az ) (Ay b
[(Ui,my)?ﬂgx — (Uiay)5x — Damo 2bmo (8§a+?8y}f+1>3x ( 5+)a!£! o)

for a,b # {(0,0), (1,0),(0,1)}.

(3.52)

This procedure is then applied to the other two pairs (1,7) and (5,7). After the three
possible solutions are generated they are weighted to achieve the values for u; 4., and
Ui zyy- There are still values on the RHS of Eq. (3.52) from the current time step
but as long as the primary variables are calculated in the correct order these terms
would have been calculated. For example consider a fourth-order scheme. In this
context the summation terms in Eq. (3.52) disappears leaving the RHS with only the

n—1/2

first term [(umy);ﬂ} — (Ui zy)5~. The same procedure is also applied to the other

j><

third derivatives: w; gz, Uizey Wiyzz, Wiywsy Wiyye, a0d U; 4. This procedure is easily

expanded to any desired order.

3.4.2 Two-Dimensional EBD scheme

The EBD scheme is a recent addition to the CESE toolbox and has been found

to be useful for Navier-Stokes simulations where cells may have very large aspect
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ratios|44, 63]. This scheme uses the same core methodology as the ¢ — 7 scheme but
differs in how the expansion points are located.

To begin Fig. (3.6) shows the geometry used in the EBD algorithm.

Figure 3.6: The stencils used for the odd derivative EBD scheme.

For ease of notation let Ny = 3, Ny = 2, Ny =6, N3 = 4 and Nl = Q, Ng = 6,

N3 = 21 Then

where () is an adjustable parameter that controls the amount of dissipation added.

Chang|63| presented an elegant function that takes into account the local quality of
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the mesh, the CFL number and the presence of a shock when determining an appro-
priate value of 2. This sort of function was found to be necessary for meshes with
very high aspect ration cells encountered while solving the Navier-Stokes equation
near a boundary. But for the purpose of this investigation a simpler function that
scales the value of {2 as a function of the local CFL. number was found to sufficient
for the Euler solver on a relatively uniform mesh. The function used in the majority

of the simulations takes the form:

0= Max (Qmm, OFLQmax)

Similar to the ¢ — 7 algorithm several possible values of u, and w, are calculated
based on the pairing of solution and expansion points. For the EBD algorithm the
pairing of these points is not as well defined as they where for the ¢ — 7 algorithm.
This is the result of the expansion point location being dependent on the vertices and
the solution point of the central cell rather than the solution point of the central cell
and the solution point of the neighboring cells. For this investigation the solution
point expansion point pairing is made up by the solution point and the vertices of its
enclosing cell. For a triangular mesh the pairs are (i) 1, with 2 and 4, (ii) 5, with 2

and 6, and (iii) 7« with 6 and 4 The system of equation making up the first system
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are:

(24)

Axy Ays | | (ig)h

Ary Ay | | (uiy)5

(3.54)
n—1/2 A A atba,, no(Axs)” Ay, b
B [(uz)g]lx — 2 am0 2b0 <amaaZi)3X ( Z)a!zgl 2
- n—1/2 A A §a+by,. no(Azs)” Ay bl
|:(uz)2j| 1% - Za:O b=0a <8xaﬁzl€>3x ( 4)(1!5! 4)

where (a,b) # {(1, 0), (0, 1)} Applying this to each set yields three possible solutions
which are then weighted using a re-weighting algorithm.

The expansion of this method for finding higher odd derivatives follows the same
procedure outline for the ¢ — 7 scheme. For example, to determine the values of u; ;4.

and u; 4y Eq. (3.54) takes the form

(2,4)
n—1/2
Al’é Ay@ (ui,:pxx)gx B [(uz,:px>g:| 1% - (ui,:px>gx (3 55)
- n—1/2 .
Alﬁ Ayfl (uz’7:c:cy)g>< [(UZ’MC)Z} 1 - (Ui,xx)gx

3.5 Fourth-Order Outline

In this section, the overall time-marching algorithm is illustrated. The computational

procedure is organized in the following steps:

1. Calculate all spatial derivatives of f¥ in the previous time level based on the
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known values of all spatial derivatives of u;. Calculate all derivatives of u; and f;""

which involve temporal differentiation in the previous time level.

2. Apply the original second-order CESE method four times to calculate the following
unknowns: (U z2)7, (Wiwy)7, (Uiye)}, and (ugy,)7 at all the solution points in the

new time level, e.g., point 3% in Fig. (3.2).

3. Calculate all third derivatives listed in Table 3.1 at all solution points using the

finite difference procedure from original second-order CESE method.

4. Calculate the values of (u;)} at all solution points at the new time step. This is
accomplished by integrating the third-order Taylor series expansion of u; over the

CCE.

5. Calculate the first derivatives of (u;)7 at the new time step at all solution points.

This is accomplished by applying the central difference procedure to (uz);2

3.6 Results and Discussions

To assess the accuracy of the newly developed unstructured-mesh solver based on the
fourth-order CESE method, the following four benchmark problems were considered:
(i) a moving isentropic vortex, (ii) the interaction of an acoustic wave with a entropy
wave, (iil) a supersonic flow passing a circular blunt body, and (iv) a supersonic flow
over a guttered wedge. Case (i) shows the order of convergence of the numerical

results, and cases (ii)-(iv) shows the shock capturing capability of the solver. For
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all of these simulations the EBD scheme from |44| along with the reweighing scheme

Eq. (3.49) where deployed.

3.6.1 Convergence Result

This section reports the numerical result of a moving isentropic vortex. The conver-
gence rate is assessed by measuring the L, and L, norms of the errors of the calculated

u;. The L; and Lo norms are defined as

Ln _ VZ] }(ui)j,num - (ui)jvana’”Aj 1

Zj Aj
where the subscript “num” denotes the numerical result and “ana” the analytical
solution. In the equation, A; is the spatial area of cell j.

In the fourth-order CESE method, the third-order Taylor series are used to dis-
cretize primary unknowns u; and the fluxes f"Y with ¢ = 1,...,4. Therefore, a
fourth-order convergence rate is expected for this case. This simulation is repeated
using four different mesh with increasing resolution.

The Euler equations are non-dimensionalized and the initial conditions are taken

from Balsara|73]. The initial conditions are:

€ 1(1_y2) _
U= Usy — —e2177) g,

2T
v = Vo + —e30) 1. (3.56)
2T
T — T o (fy - 1>€2 61—7”2
o 8’}/71'2 )
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where § = y — y,, T = = — x,, and r> = 2 + jj°. The vortex strength, e, is equal to 5.
The center of the vortex is located at (x,, y,). The subscript oo denote the free-stream
conditions. In the present calculation, T, = 1 and u, = v, = 1. Density, p, and
pressure, p, are calculated from the isentropic relations and the ideal gas law: p =
TY0=Y and p = pT. The computational domain is a 10 x 10 square, and time duration
of the simulation is 0 < ¢ < 10. The initial conditions of spatial derivatives of u; are
calculated analytically from the initial conditions. Periodic boundary conditions are
applied at all boundaries. It should be noted that this problem is not periodic in
nature so applying these boundary conditions introduces some numerical error to the
simulation.

To determine the convergence rates, the L; and Ly norms of the calculated density
were used. The characteristic mesh size, h, is defined as the square root of the
averaged cell area. The calculated convergence rates are tabulated in Tables 3.2.
As a reference, the convergence rates of numerical solutions obtained by using the

original second-order CESE method are tabulated Table 3.3.
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Table 3.2: Convergence rates of the isentropic vortex by using the fourth-order CESE
method on unstructured meshes.

CFL Error Convergence

h dt min avg max L1 L2 L1 L2

3.28E-01 5.10E-02 0.37 047 0.70 1.087E-02 2.674E-02 - -
1.64E-01 2.55E-02 0.32 0.47 0.73 4.411E-03 1.052E-02 1.30 1.35
1.10E-01 1.70E-02 0.27 0.46 0.70 1.956E-03 6.040E-03 2.01 1.37
8.23E-02 1.28E-02 0.29 0.46 0.71 5.319E-04 1.228E-03 4.52  5.52
6.59E-02 1.02E-02 0.26 0.46 0.71 2.735E-04 7.618E-04 3.00 2.15
5.49E-02 8.50E-03 0.29 0.46 0.70 1.184E-04 3.295E-04 4.57 4.57
4.71E-02 7.29E-03 0.29 0.46 0.70 5.363E-05 1.312E-04 5.15  5.99
412E-02 6.38E-03 0.28 0.46 0.72 2.826E-05 6.364E-05 4.83  5.46
3.66E-02 5.67E-03 0.28 0.46 0.70 1.780E-05 3.599E-05 3.93 4.85
3.30E-02 5.10E-03 0.27 0.46 0.74 1.252E-05 2.341E-05 3.36 4.12
3.00E-02 4.64E-03 0.25 0.46 0.76 8.327E-06 1.505E-05 4.29  4.65
2.75E-02 4.25E-03 0.27 046 0.73 6.564E-06 1.086E-05 2.75  3.76

The varying convergence rates are not uncommon for unstructured solvers and is

quite common in schemes such as the Discontinuous Galerkin. For example the same

simulation was solved by the DG scheme by Dumbser and Munz 37| and convergence

rates of 4.3 to 4.9 were reported. Balsara et al. [73] reported an even wider range of

convergence rates ranging from 2.4 to 6.92 with the use of a limiter and a range of

4.0 to 5.47 without the use of a limiter.
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Table 3.3: Convergence rates of the calculated vortex by using the second-order CESE
method and unstructured-mesh.

CFL Error Convergence

h dt min avg max L1 L2 L1 L2

3.28E-01 5.10E-02 0.40 047 0.63 1.620E-02 4.210E-02 - -
1.64E-01 2.55E-02 0.34 0.47 0.70 5.899E-03 1.659E-02 1.46 1.35
1.10E-01 1.70E-02 0.29 0.46 0.69 2.921E-03 8.395E-03 1.74 1.69
8.23E-02 1.28E-02 0.30 0.46 0.70 1.786E-03 5.176E-03 1.71 1.68
6.509E-02 1.02E-02 0.27 0.46 0.71 1.186E-03 3.428E-03 1.85 1.86
5.49E-02 8.50E-03 0.29 0.46 0.70 8.727E-04 2.422E-03 1.67 1.89
4.71E-02 7.29E-03 0.29 0.46 0.70 6.835E-04 1.860E-03 1.59 1.72
4.12E-02 6.38E-03 0.28 0.46 0.72 5.489E-04 1.464E-03 1.65 1.80
3.66E-02 5.67E-03 0.28 046 0.70 4.610E-04 1.179E-03 1.49 1.84
3.30E-02 5.10E-03 0.27 0.46 0.74 3.848E-04 9.749E-04 1.73 1.82
3.00E-02 4.64E-03 0.25 046 0.76 3.259E-04 8.129E-04 1.75 1.91
2.75E-02 4.25E-03 0.27 0.46 0.73 2.903E-04 7.114E-04 1.34 1.54

The Ly norm for both the second and fourth order errors are shown in Fig. (3.7).

In this figure the blue and red lines represent the ideal second- and fourth-order

convergence rates respectively.

3.6.2 Acoustic wave interaction

This problem has been used to benchmark problems in Computational Aeroacoustic

(CAA)[74]. This problem was original developed to be solved by the linearized Eu-

ler equations and was modified slightly for use by the Euler equations. The initial
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Figure 3.7: The Ly norms of the calculated density of the simulated vortex based on
the fourth- and second-order CESE methods. Where the mesh size is taken as the
square root of the average cell area.
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conditions used in the simulation are

p(z,y,t =0)=exp

p(z,y,t=0)=exp

2, .2
—1In(2) (ZE ;; Y

)

+0.lexp |—In(2) (

u/(x’ y,t =0) = 0.04yexp | —In(2) <(ZE — 67 )

V'(x,y,t =0) = —0.04(x — 67) exp | —In(2) (

P =P+ 0P p=potdp

U = U + U

V= Vs + OV

T —67)% +y?
25

(x —67)? + 32
25

(3.57)

(3.58)

where p, p, u, v are pressure, density, x and y component of velocity respectively, sub-

script oo denotes the free stream values and a superscript ’ denotes the perturbation

to the free stream and 0 is used to decrease the perturbation. In the original inves-

tigation 0 = 1 and all free stream quantities where zero. In the current simulation

§=10""°

, Poo = 1/7, poo = 1.0, e = 0.5, v = 0 and v = 1.4. The domain is a square

with boundaries at 100 and non reflecting boundary conditions are applied at all

boundaries. The simulation was run for a non-dimensional time of 60. Under these

conditions a solution to the linear form of the equation is possible and was originally
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given by Tam and Webb|75]

, T— Ul [T - . — o [(2—6T—Usot)?+1?]
u'(z,y,t) = o p eat sin(&t)J1(En)EdE 4+ 0.04ye™ 2 oot)" Y
q 0

2
V(w,y,t) = zy / ear sin(€t)J1(€n)EdE — 0.04(z — unet)e 2@ 07U+
an1 Jo

1

Pt = 5o [ cosen nemsas

%]

p(x,y,t) = p/ + 0.1¢ 2@ 67-Usct)*+y

(3.59)

Due to the properties of linear equations this solution is still applicable to the modified
initial conditions. The simulation was run at three different resolutions, 18K, 74K
and 296K cells. The progression of these meshes represents a doubling of resolution.
The simulations was run using both the second and fourth-order Euler solver. To
determine the accuracy of solver on each mesh the values along the line y = 0 is shown
in Fig. (3.8). In this figure the results from the second- and fourth-order schemes are
compared to the linearized solution. In this plot the domain has been reduced to
show greater detail near the pulse interactions. From the results it is evident that for
all cases the fourth-order results out perform the second-order results on the same
mesh. It can also be seen that the fourth-order results have similar quality as the
second-order mesh with twice the resolution e.g. the quality of the results from the
fourth-order solver on the 18K mesh are similar to the second-order results from the

74K mesh.
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Figure 3.8: Entropy acoustic pulse interaction at t=60.
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3.6.3 Supersonic Flow over a Blunt Body

In this subsection, a supersonic flow passing a blunt body is considered. The working
fluid is air with a specific heat ratio v = 1.4 and the gas constant R = 287.15 J /kg
K. The free-stream Mach number is 3.0, p,, = 1 bar, and p, = 1.23 kg/m?3. The
radius of the circular blunt body is 0.5 meters and the outer domain is an ellipse
with a major and minor axes of 2.5 and 1.5 meters respectively. The re-weighting
scheme employed in this simulation is the S2 scheme from Zhang [72| combined with
the geometry from Chang [44].

Figure (3.9) shows the contours of the calculated density of the Mach 3 airflow
passing the blunt body. The solid line in the plot indicates the sonic line. The
simulation was run with both the second and fourth order schemes at two different
resolutions. The coarse mesh has 6148 cells and the refined mesh has 47858 cells.
To determine the accuracy the post shock density and the density at the wall were
compared to the analytical solution. In all cases the fourth and second order schemes
converged to similar solutions for a given mesh. For all cases the post shock density
predicted by the simulation was in good agreement with the analytical solution. The
density at the stagnation point on the surface predicted by the simulations where
5.07 and 5.24 kg/m? for the coarse and fine mesh respectively. These values agree

well with the analytical value of 5.29 kg/m3.
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Figure 3.9: The contours of calculated density of a Mach 3 air flow passing a circular
blunt body. The black solid line shows the sonic line.
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Figure 3.10: The contours of calculated density of a Mach 3 air flow passing a circular
blunt body. The black solid line shows the sonic line.

3.6.4 Supersonic Flow over a Guttered Wedge

The final two-dimensional simulation is the so called dust layer problem witch is based
on the experiments by Suzuki, et al. [76]. This is an unsteady problem in which
supersonic air flows over a wedge with gutters on them. Instead of the standard
moving shock wave typical of supersonic flow over a wedge there are many different
shock waves that interact with one another as the shock wave progresses up the ramp.
This simulation using the same initial conditions and setup as the simulation seen in

Suzuki, et al. Fig. (5a)|76]. Under these conditions the wall makes an angle of 30
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degrees and each gutter surfaces has a length of 4 mm. The flow ahead of the shock
wave had a pressure and temperature of 1 bar and 300 Kelvin respectively. The shock
wave moves at a speed of Mach 1.41. The mesh is roughly uniform and contains
approximately 144 thousand cells, with this resolution there are approximately 16
cells per gutter surface. The simulation time was 92 micro seconds, which is the time
it takes the shock to travel from the start of the wedge to the end of the seventh
gutter. A wall boundary condition was applied at all boundaries except the inlet
which was subsonic and the exit witch was set to non-reflecting. During the simulation
the CFL number ranged from about 0.25 to 1.1. Since the calculation of the CFL
number is not exact having a CFL number slightly greater than 1 is not unexpected.

To compare with the experimental results a numerical Schlieren was computed by

(& ))
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(a) Second Order (b) Fourth Order

(¢) Experimental Schlieren |76]

Figure 3.11: Numerical Schlieren contours for a Mach 1.41 flow over a guttered wall.
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CHAPTER 4

THREE-DIMENSIONAL CESE

To begin, in the three-dimensional derivation it is assumed that a set of IV, three-
dimensional, coupled, first-order hyperbolic partial differential equations are cast into

the following vector form:

oU | OF* OFY  OF*

4 4 0 4.1
ot ox dy 0z (4.1)
where U = (uq,us, ..., up,,)" is the unknown vector, and
Fovs = (ff%% f57, 0 fy27)!, s the flux function vector. In contrast to conven-

tional finite volume methods, the Reynold-Leibniz integration rule, also known as the
transport theorem, is not used to form the equivalent integral equations for conser-
vation laws. Instead, in the CESE method, each equation in Eq. (4.1) is perceived as

a divergence-free condition in the four-dimensional Euclidean space, &y, (z,v, 2, t):

V-h =0, (4.2)
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where h; = (fF, f, f7,w)" is the space-time flux function and ¢ = 1,..., Ny, Aided

i Jq

by Gauss’ theorem, Eq. (4.1) is equivalent to the following integral form:

%hi(x,y, z,t)-ds = 0. (4.3)

In the CESE method, Eq. (4.3) is integrated over each CE with s as the surface of

the CE. As such, space-time flux conservation over each CE is enforced.

4.1 Three-Dimensional Discretization

The previous two chapters began with a detailed schematics of the CE and SE.
Unfortunately, the CE and SE associated with the three-dimensional CESE scheme
are too complex to clearly illustrate. Instead, the CE is broken up into three parts:
(i) the top BCE, (ii) the bottom BCE, and (iii) the side BCE. For readability, the
following derivation will assume that the mesh only contains tetrahedrals. Once
this derivation is understood it is trivial to extend to meshes with other cell types
including mixed elements.

To begin, consider a tetrahedral mesh where each cell has four vertices and one
centroid, C;. For easy of notation each tetrahedral is referred to by its centroid,
e.g. tetrahedral 3 has as centroid C3. The construction of the three-dimensional CE
follows the same basic steps of its two-dimensional counterpart and consists of two

primary steps. First, the bottom BCE is constructed and is then projected in time
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by a distance of At/2. Since this derivation assumes a non-moving mesh the bottom
and top BCEs have the same spatial dimensions but different temporal ones.

To construct the bottom BCE, consider a system of five tetrahedrals C;, i =
0,...,4. Where Cj is the central tetrahedral and C, Cs, C3, and Cy are its neighbors.
At this point the bottom BCE is further divided into four parts, where each part is
associated with one of the neighboring cells. It is the union of these four parts that will
form the bottom BCE. The shape of each of the four parts is a triangular bipyramid
and its vertices consists of: the cell centroid of the central cell, the cell centroid of a
neighboring cell and the three vertices that makes up the face shared by the central
and neighboring cells. Although this shape has the same number of vertices as a
four-sided pyramid, no four points coexist on the same plane. For example, consider
the points Cy and Cj, as well as the three vertices that makes up the face shared
by Cy and Cj, i.e. Vi, Vi, and Vj. This portion of the BCE is shown in Fig. (4.1).
The other three parts of the bottom BCE are formed by taking Cy a neighboring cell

center, C, Cy, and Cy and the vertices that makes up their shared face.
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Figure 4.1: A portion of the bottom BCE for a three-dimensional tetrahedral mesh.

Two important points in this figure are the solution points associated with cells
Cp and C3. These points are denoted by a green x and the labeled as Sy and Ss.
The location of the solution points are found using the same procedure used in the
second-order CESE scheme. The use of various line colors is meant to aid the reader
in identifying the different segments. The red lines are the shared faces of cells C
and Cj, the blue lines are formed by the vertices and neighboring cell center and the
dashed black lines are formed by the central cells’ cell center and the vertices of the

shared face.

137
DISTRIBUTION A
Approved for public release;
distribution unlimited.



The next step is to construct the side BCEs. To do so, take one of the faces
from one of the bottom parts of the BCE and extrude it in time forming a BCE in
a four-dimensional space-time coordinate system. A sample side BCE is shown in
Fig. (4.2). In this figure the points with an apostrophe, ', denote the position at the

next time step. It is important to note that the spatial coordinates do not change,

— Al — 2/ )
€.g. Ty, = pr Y, = yV1’ 2y, = ZV1'

><S3

Figure 4.2: A side BCE associated with the solution point Cj.

It should be noted that there are six side BCEs associated with each portion of
the bottom BCE. Making a grand total of twenty four side BCEs.

The final step is the formation of the top BCE. This is formed by the union of
all vertices from all of the side BCEs at the next time step while maintaining the

connectivity of the vertices. The resulting object is identical to the bottom BCE
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except that the temporal coordinates are shifted by At/2. A portion of the top BCE

is shown in Fig. (4.3).

Figure 4.3: A top BCE segment of a for a three-dimensional tetrahedral mesh BCE.

The CCE associated with cell Cj is formed by the union of all bottom, side and
top BCEs described above. This CCE can be divided into four BCEs, with each one
associated with one of the neighboring cells. For example the bottom and top portions
of the BCE associated with Cj are show in in Fig. (4.1) and Fig. (4.3) respectively

and the side portions of the BCE consist of the six side BCEs detailed above.

139
DISTRIBUTION A
Approved for public release;
distribution unlimited.



With the CE defined in three-dimensions it is necessary to define the SE. In the
three-dimensional CESE scheme the SE is a four-dimensional volume and cannot be
properly represented on paper. A formal definition of a SE for the three-dimensional
CESE scheme is also difficult to express. Instead it is more productive to think of
which portions of the CCE are governed by which solution point. To begin, the Taylor
series that is expanded from the neighboring solution points are used to integrate over
the bottom BCE as well as the outer portions of the side BCE. The out portions of
the side BCE are those that does not contain the points Cjy and Cj. The Taylor series
expanded from the central solution point at the new time step is used to integrate
over the top BCE as well as the interior side BCEs. Where the interior side BCEs
are those that contain the points Cy and Cf.

With the CE and SE defined it is necessary to express the discretization of the
primary variables. To accomplish this an Nth-order Taylor series expansion of the

unknown wu; inside a SE is used. This Taylor series is expressed as:

N— N-—a—
o i N-a ab f gatbtetdy, (z —2;)" (y —y)" (2 = ) (t = t")*
i T i i axaaybazcatd ' al b! c! d!

J

(4.4)

The subscript 5 and the superscript n are the spatial and temporal anchoring point

respectively. Since the current investigation does not assume the symmetry property

2 2 . . .
0" gy;x are considered two distinct

oxdy

of spatial derivatives, variables such as and

variables. This means that Eq. (4.4) is not initially compatible with this assumption.
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In order to use Eq. (4.4) within the new scheme the mixed derivatives are averaged.

For example

Pu, 1 Pu, N P, N A,
0x20z 3\ 0x0x0z 0x020x  020x0x |

All derivatives of u; in Eq. (4.4) are succinctly expressed by the following Taylor

series expansion:

801,62 A A—a a—b a—b—c 8Bui n
Dz 0y 0K otk 2 DT +ayT+b) K +eprl+d (4.5)

J
(x— ;)" (y — ;)" (2 — z;)° (t — t™)*
al b! c! d!

where C =1+ J+ K+ L A=N—-C,and B=C+a+ b+ c+ d. Obviously, the
Taylor series expansion of u; in Eq. (4.4) is a special case of Eq. (4.5) with A = N
and C' = 0. Similarly, the fluxes, f"¥*, and their derivatives inside a SE are also

discretized by the Taylor series expansion:

A— _
acf‘@y,z ZA:A—a a—b a—b—c < an'q,‘7y7z )n
T, JA- KL T+an, J+bA~K+cArl+d
0x' 0y’ 02K 0t prar ol OxttaQy/+bgzK+egth+ ; (4.6)
(x— ;)" (y — ;)" (2 — z)° (t —t")*
al b! c! d!

where C' and B have the same definitions as that in Eq. (4.5). When C' = 0, Eq. (4.6)

is the Taylor series expansion of the flux f;"** itself.
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The Taylor series coefficients listed in Eqs. (4.5) and (4.6) are the unknown vari-

ables that need to be calculated as part of the Higher Order CESE method.

4.2 Three-Dimensional Independent Variables

In the following derivation it will be shown that the only independent variables are
the conserved variables and their spatial derivatives. This portion of the derivation
follows the same procedure used in the one- and two-dimensional derivations.

To begin, the flux terms are written as functions of u; and its spatial and temporal
derivatives. As it was with the one- and two-dimensional algorithms two different
methods will be presented. The first method, shown below, is generic and not tide
to any particular physics while the second method, shown in Section 5.2, is more
numerically efficient but its implementation is dependent on the constitutive equation,

e.g. BEuler, Navier-Stokes.

To begin, the chain rule is used to determine the first derivatives of f** and is
expressed by the summation:
a :r7y7z m a ':B7y7z au

fz _ fl l (47)

0V, &= ou 0V

where ¥y = {z,y, 2z}, and ¢t. On the right hand side of Eq. (4.7), 0f""*/0u, is the

Jacobian matrix, which is easily derived from the relationship between the fluxes and
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the conserved quantities. For the second derivatives,

S R ) o +Zm:§m: L7 Dy Du,

0\1110\112 N 0ul 8\1110\112 8u18u 0\111 0\112
=1 p

=1 p=1

(4.8)

where (\Ill>qj2) = {([L’,ZL’), (l’,y), (ZL’,Z), (ZL’,t), (y,x), (y>y)> (y,z), (yat)> (Z>I)’ (z,y),

2, %), (2,t), (t,t)}. The second term on the right hand side of Eq. (4.8), 8% f"%* /Ou;0u
7 P

is a Ngg X Ngg X Ny, matrix, which is readily derived from the governing equations.

For the third derivatives,

asfixvyvz B m aflxvyvz asul

_|_

OOV, du OU10T,0V;
i m 82fx,y,z< Py Ou, . P, O, 0% 8%) .
L L i, \ DU,0T, OV OV, 0U5 0y OW,0V; OV,
szzm:zm: P Ouy duy, du,
P et Ou0u,0uy OV, OWy OW5’
(4.9)
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(U1, Uy, U3) = {(z,2,2), (x,2,y), (x,z,2), (x,x,t),
(z,y,2), (,9,9), (x,y,2), (2,9,1),
(x,z,2), (x,2,9), (v,2,2), (z,2,1),
(v, 2, 2), (y,2,9), (y,2,2), (y,2,1),
(W, y,2), (4,4,9), (W, 9,2), (,9,1),
(v, 2,2), (4,2.9), (y,2,2), (y,21),
(z,z,x), (2,2,9), (z,2,2), (2,2,1),
(z,9,2), (2,9,9), (2,4,2), (2,4,1),
(z,2,2), (2,2,9), (2,2,2), (2 2,1),

(x,t,t), (y,t,t), (2,t,t), (t,t,t)}.

The last term on the right hand side of Eq. (4.9), 8 f"¥"*/0w,0u,0u, is a N, x
Ney X Ngy X N, matrix, which is derived based in the definition of f"¥ as functions
of u;. Aided by Egs. (4.7-4.9), all of the derivatives of f;"¥* are expressed as functions
of u; and its derivatives.

Next, the Cauchy-Kowalewski procedure for non-linear equations is used to relate
the temporal derivatives of the primary unknowns to the conserved variable u; as well

as its spatial derivatives e.g. ; s, U; zy, Wigys, ... 10 proceed, let the Taylor series
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satisfy Eq. (4.1) at point (j,n),

ou " (OfF\" (OfIN" (OF7 "
<8t>j__(0x>j_<ay)j‘<az)j (4.10)

Each term in the above equation is a coefficient in the Taylor series. For conciseness,

the super- and sub-scripts, i.e., 7 and n, indicating the space-time location are dropped
in the following derivation. Aided by Eq. (4.10), the second derivatives of u; involving
the first time differentiation are readily available by assuming that the following
algebraic equations are valid:

Pu _ P PP Pf P Pfr PpOF

dxdt  Oxdx  Oydr  0z0x’ Oydt  Oxdy Oydy  0z0y’
82 u; B 82 me 82 fzy 02 fzz 82 u; 82 fzx 02 fzy 02 fzz

020t 0xdz Oydz 020z Otdt  Oxdt Oyot 020t

(4.11)

Although Eq. (4.11) has a temporal derivative of u; on the right hand side of the

equation, it is still a function of spatial derivatives of u;. As an example, the first

2 rx
term on the right hand side of the equation, i.e., (gg&) is examined. This term is

easily recast into the following expression:

DL = OfF 0Py T~ OEfE Ouy Ouy,
Jadh 2= du; dx0t | Z ; Dudu, dx Ot

afx <a2fx a2fiy N 82ff> B

Oxdxr  Oydx  0z0x

8ul
S P Ou (6‘ff of! aff)'

Ou0u, Ox \ Ox * dy * 0z

Z
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This procedure is then applied to the succeeding terms in Eq. (4.11).

For the third derivatives of u; involving a single temporal derivatives it is assumed

that:
Pu_ o (g op Pf
0xOWot OV \ Ox0xr  Oydr  0z0x |’
agui o _i aniw a2fiy 82]022
oyovot oV \ 0xz0y  Oydy  Oyoy |’
(4.12)
0

Pu_ 0 (f 0f 0%
02000t 0¥ \ 0x0z  Oydz 020z )’

Pu; 0 02ff+82f§’+02ff
ototot ot \ zot  Oyot 020t |’

where U = {x,y, z,t}. Equation (4.12) includes terms with multiple temporal deriva-
tives on the right hand side of the equation. These terms are expressed in terms of
spatial derivatives through the same approach as that shown in Eq. (4.11).

Essentially, Eqs. (4.10-4.12) assume that the coefficients of Taylor series expan-
sion for u; and f;"¥"* satisfy the additional higher-order equations, which are readily
obtained by applying spatial differentiation to the Euler equations Eq. (4.1). The
procedure is recursive and is extended to higher derivatives of u;.

To recap, all the first-, second-, and third derivatives of u; and f;"** involving
any derivative of time can always be replaced by relationship formulated in terms of
spatial derivatives of w;: This is achieved by the following steps: (i) the additional
equations shown in Egs. (4.10-4.12), (ii) Eqgs. (4.7-4.9), and (iii) the chain rule as

shown in Eqs. (4.7-4.9). As such, the independent variables in the fourth-order CESE
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method only include the conserved variables u; with ¢ =1,2,..., N, and their spatial

derivatives. Table 4.1 lists the primary unknowns of the fourth-order CESE method.

Table 4.1: The list of unknowns for the three-dimensional, fourth-order CESE
method.

Even variables Odd variables

U Uy o Uy y Uyj,
ui,:px ui,:pxw ui,:pxy ui,xwz
ui,xy ui,xy:c ui,xyy ui,xyz
ui,xz ui,xzx ui,xzy ui,xzz
ui,y:c ui,y:c:c ui,y:cy ui,y:cz
Uiy Uiyyzr  Uigyyy — Wiyyz
ui,yz ui,yzm ui,yzy ui,yzz
Ui, zq Ui, zaa ui,zxy Ui, za2
ui,zy ui,zy:c ui,zyy ui,zyz
ui,zz ui,zzx ui,zzy ui,zzz

4.3 Three-Dimensional Space-Time Integration

In this section, the procedure for enforcing space-time flux conservation in three-
dimensions is illustrated. The integration is used to calculate the primary unknowns
and their even derivatives and is carried out in a four-dimensional Euclidean space,
three in space and one in time.

The integration is split into three parts: (i) the side BCE, (ii) the bottom BCE,
and (iii) top BCE. The flux through the top BCE is a function of the solution at the
new time step. On the other hand, the flux through the side and bottom BCEs are

calculated from the known solution at the previous time step at neighboring points
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of the current solution point. Even though the integration over the top BCE uses
values at the new time step the integration is still explicit as long as the values at

the new time step are calculated in the correct order.

4.3.1 Three-Dimensional Side Integration

The integration over the side BCEs requires three separate integrations for each BCE,
one for each external face. For a tetrahedral mesh there are four BCEs resulting in
a total of 12 separate integrations. Since the integration over each side BCE is
identical the procedure is only shown once. To generalize the derivation let point 1
be the neighboring cell center, points 2 and 3 be the vertices at the previous time step
and points 1/, 2/, and 3’ be the same coordinates at the new time step, and (j,; t"~%/?)
is the coordinate of the neighboring cell center.

The computation of the flux through one segment of the side BCE requires the
evaluation of the integral in Eq. (4.3). The first step in this integration is to determine

the normal vector for this BCE. The normal was found to be:

Tg— X1 Yo— W 22—21 ta—t

= [N" i, N¥ j,N* k,0 {] (4.13)

T3—T1 Ys— Y1 23—z l3—1t

/ / / /
TI—T Y- - At —h

It is important to note that the normal in the  direction is zero. Applying Eq. (4.13)
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to Eq. (4.3) yields:

z,9y,2 N N—a N—a—bN—a—b—c 8fmz n—1/2 1
R = _ 9
[( )szde} i Z Z <8zaaybazcatd> ‘ albleld!

Ir

i a c n— d
ngl/w (o 20)" (=)' (== 20)" (1= 02) v

Vsi (4.14)

where ngj is the normalized unit vector and VS] , 7 = 1,2,3 represents each of the
side BCEs associated with a single BCE. This integration is repeated for each BCE.
For the side BCE associated with solution point S5 shown in Figures (4.2) and (4.1)

each side BCE is composed of:
o Vo’ ={C5, V1, V4, O3, VI, Vi}
o Vgy ={C5, Vi, Vo, O3, V[, V3}
o Viy ={C5 V2, V1,035, V3, Vi}

Equation (4.14) can be simplified by recognizing that the temporal integration is
decoupled from the spatial integration. Further simplification is possible by expressing

Eq. (4.14) in its parametric form, e.g., x = x; + (z2 — 1) + (x5 — z1)n. These

149
DISTRIBUTION A
Approved for public release;
distribution unlimited.



simplifications leads to the equation,

8flx7« n—1/2 1 g d+1
0z2Qyb0zcotd alblel(d+ 1)\ 2

Jr

(2 —y1) €+ (ys —y1) n + —Z/j]b (2 — 21) €+ (23 — 21) n + 21 — 25| dndé,

(4.15)

where 2;23 represents the summation over each of the side BCEs associated with
a single BCE. Since Eq. (4.15) will be referenced later it is convenient to express it
as: |Eq. (4.15)](x1, x2, X3, X, At, ffgl) Equation (4.15) is more complex to integrate
than its two-dimensional counter part but is still easily computed using a symbolic
mathematical package such as MATLAB. The integral in Eq. (4.15) is integrated
below for the values of a,b and ¢ required by the fourth-order CESE algorithm. To

start let Ax; = x; —x;, Ay, = v —y;, Az, = z;—z; for i = 1,2, 3. With this definition

the integral in Eq. (4.15) becomes
1 1-¢ 3 . . . w?
Lope= [ [ TI[bwhe+aud+ av{1—¢ - o)) dnd
o Jo

where W is any combination of {x,y, 2z} and w = {a,b,c¢}. When a = b= c =0 the
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integration is

s3D
0,0,0

To integrate any of the first derivatives let a = 1 and b = ¢ = 0 the integration is

s3D _
100 E Az;.

For any second derivatives let a =b=1and ¢ =0

3 3 3
£t = i4 Z (Az;Ay;) + Z Ax; Z Ay;
=1 i=1 i=1

For any third derivative let a =b=c=1

S T
3

3 3 3
1=1 i=1 i=1 i=1

i=1 =1

Given these three formulas it is trivial to derive all other integrals for a fourth-order
scheme. For example to obtain the formulation for L3 , one may substitute Ax; for

Ay; in the formulation for L7, .
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4.3.2 Three-Dimensional Flux through Top and Bottom Hyperplanes

The evaluation of the flux through a bottom BCE requires the integration over a
triangular bipyramid. This integration has to be broken up into two parts. There are
multiple methods to break up a bipyramid and in this investigation they where divided
into an outer tetrahedral and an inner tetrahedral. To generalize the integration let
points 1,2, and 3 be the vertices of the shared face, point 4 is the cell center of
the neighboring cell and point 5 is the cell center of central cell. With this labeling
the inner tetrahedral comsists of points 1, 2, 3, and 5 and the outer tetrahedral
consists of points 1, 2, 3, and 4. When integrating over the bottom BCE, the Taylor
series is expanded from the solution point associated with the neighboring cell, point
(jr;t"1/2). When integrating over the top BCE, the Taylor series is expanded from
the solution point of the central cell (j;¢"). Since the geometry of the top and bottom
BCEs is the same, only the derivation for the bottom BCE is reported here.

To evaluate the integral in Eq. (4.3) over the bottom and top BCE the normal is

required and is found using

To— X1 Yo—UY1 22— 2
. Tog— X1 Yo— 22—21 ta—t .
Nouy = =—lzs—21 ya—wm zm—a|b
T3—T1 Ys— Y1 23—z lz3—1t
Ty — X1 Ys—UY1 24— 2

Ty— X1 Ys— W za—21 ta—t

(4.16)
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and

>
o

. To—T1 Yo— 22—z21 ta—t

T3—T1 Ys— Y1 23— 21 lz3—1t

Ts— Ty Ys— Y1 25— 21 ls—1

It should be noted that the normals in the ¢, j and k direction are all zero

Eq. (4.16) to Eq. (4.3) yields:

where n}, .. are the normal components in the ¢ direction for the inner

trapezoid. It should be noted that there is no time integration in Eq. (4.1

To— X1 Yo2—UY1 22— 2

T3 —T1 Ys—W1 23— 21

Ts —T1 Ys — Y1 25 — 21

>

(4.17)

. Applying

(4.18)

and outer

8) because

all points inside of the volume VéD are at the same time step. To integrate Eq. (4.18)
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the coordinates are casted into its parametric form:

D n—1/2 N N—aN—a—b 8a+b+cui n—1/2 1
(], =23 2 Dwdybdz alblc]

(2 =y €+ (s — ) 1+ (wa — ) @ + 11 — w5
(22— 21)E+ (23— 21) N+ (20— 21) o + 21 — 2] )dgpdnd€+
N / /1 5/1 o ([e2 =20 €+ (aa = 2) n+ (25— 20) 0 + 1 — ]
(32— y0) &+ (s —y)n+ (v — 1) @ + 31 — )"
(22— 21) €+ (23 — 21)n + (25 — 21) o + 21 — zj]c)dgodndgl,

(4.19)

where N* = |J|n' and |J| is the determinate of the coordinate transformation matrix:

Ty — Ty Ty — Ty Ty — Ty

= oy =y vy —yr Yy — Yo

P U A U R U

This equation is applied for each BCE in the CCE. For a trapezoidal mesh there are
four BCEs. For easy reference this equation is written as
|Eq. (4.19)](x1, X2, X3, X4, X5, X;, Uj;). Equation (4.19) is easily modified for the top

surface by using the Taylor series expanded from the current solution point (j;n).
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The resulting equation is:

N N—aN—a—b n
n aa—i—b—l—c ; 1
(] =D 5
Pl Oxedyb0dzc | alblc!
j

(g2 —y) €+ (ys —y) 0+ (s —y) @ + 91— y5]

[(2’2 -2 €+(23—Zl)77+(24—21)90+21 —z]] )d¢dnd€+
1-€ 1€n
Now // / x2_I1)§+(x3_$1)n+(5—:131)s0—|-931—;)3]}

(2 —y) €+ (ys —y)n+ (Ys — 1) ¢ + 11 —yj]b
[(22 — Zl) § -+ (23 — 21) n —+ (25 — 21) (2 + 21 — Zj} c)dg@dndﬁ] s

(4.20)

For future reference let Eq. (4.20) be referenced as:

|Eq. (4.20)](x1, X2, X3, X4, X5, X, Uje). An algorithm detailing the numerical procedure
used to calculate the flux through the bottom and top surfaces of the space-time
element are detailed in Algorithms 8 and 9 respectively. Integrating Eq. (4.19) is easily
accomplished through a symbolic mathematical package. The integral in Eqs (4.19)

and (4.20) is integrated for select values of a, b, and c¢. To start let Az; = x; — x;,
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Ay, = yi—yj, Az; = z;—z; for i = 1,2, 3,4. With this definition the integral becomes:

1-¢ rl-€—n
bt3D
abc / / /

3 i
[T |awhe + Awly + AW+ AW (1= ¢ — 5~ w)| " dpdnds,

Jj=1

where ¥ = {z,y, 2} and w = {a,b,c}. When a = b = c =0 the integration is

thi’)D 1
0,00 — -

When a = 1 and b = ¢ = 0 the integration is
4
Llitg% 2% Z Az;.
i=1
Whena=b=1and c=0
1 4 4 4
Lyt = 120 Z (Az;Ay;) + Z Ax; Z Ay;
i=1 i=1 i=1
Whena=b=c=1

4 4 4 4
LYY = %0 [Z Az; Z Ay; Z Az +2 Z (Az; Ay Az) +
42:1 =1 , =1 \ =1 , , \
i=1 i=1 i=1 i=1 i=1 i=1
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The other integrals required for a fourth-order scheme are easily obtained through
substituting. For example 51(’)%172 is obtained by substituting Az; for Az; in the for-

mulation of £ .

4.3.3 Three-Dimensional Even Derivatives Terms

In the previous two subsections the procedure required to integrate the primary vari-
able over the top, bottom and side BCEs, was detailed. In this subsection the equation
used to integrate u; and its even derivatives is detailed. To determine u; at the next
time step Eqgs (4.14), (4.19), and (4.20) need to be evaluated and summed up over

every surrounding cell.

n—1/2

S [ + [k, ] o

Ir Jr

where Np is the number of cells neighboring cell 5. Since the definition of the CE
is the same as the original scheme the integration of the linear terms over the top

surface becomes null. This allow for an explicit formulation of wu;

Np n
1 -\ 3D n—1/2 n—1/2
)y = > F) +[F,~3D ] +[Fi3-D} ,
(U )] V;opCE <[( top:| ] ( )bottom i ( )szde j

r=0 J

where

‘/topC'E - %Z <(Nltn>]r + (Néﬂt)jr>

r=0
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and

F, 3p1" N N—-—aN—-a—b 8a+b+cui n 1
R i>top . =2 dxodybdzc | alblc!
" J

[(.’132 —21) &+ (z3—21)n+ (x4 — 1) p + 11 _xj]a

—
—
=
SN—
<
O\H
N
2
A
N
2
PN
4
/N

(g2 —y) €+ (ys —y) 0+ (s —y) 0 +y1 —y5]°

(22 = 20) €+ (25— 2)m + (24 — 21) 9+ 21 — 5] ) dpdndé+
1-¢ 1€n
Nout) // / (w2 — 1) €+ (25 — 21) )+ (25 — 21) @ + 1 — 25"

[(yz—y1)§+(y3—y1)n+(ys—y1)90+y1—yﬂb

[(z2—21) €+ (3 —21)n+ (25— 21) @+ 21 — zj}c>dg0dnd§] ,

with (a,b,c) # {(0,0,0),(1,0,0),(0,1,0),(0,0,1)}. Essentially the above equation is
Eq. (4.20) without the (u)7, (use)}, (Uiy)7, (u;2)} terms.

Next it will be shown that the same steps are used to determine all of the even
derivatives. Since each even derivative is expressed as a Taylor series and the def-
inition of the CE and SE remain the same the same integrals are reused. In fact
the only difference between this integration and the previous one is the order of the
Taylor series to be integrated. Since the examples used in this chapter are fourth-
order accurate this derivation will focus on the integration of the second derivatives

in the context of a fourth-order scheme. To proceed, Eq. (4.12) is cast into into the
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following divergence-free equations:

Vobig =0, Vi hig =0 V- h,. =0,
V-hi,, =0 V-h,, =0 V- -h, =0, (4.21)

V- hi,zx = 07 V- hi,zy = 0, V. hi,zz = 0,

where
hi,mm = (fzm,:mv’ i?{mm? iz::mv’ ui,m$)7 hi,ry = (fz%:py’ i%my? if:py? ui,wy)v
hi,mz = (ffxz’ i%mz? ifxz’ ui,mz)a hi,ym = (fia,:y:c’ i%yw? fify:c? ui,y$)7
hi,yy = (f;(,:yy’ z‘%yy’ ifyy’ ui,yy)a hi7yz = (fz?,cym il{yz’ ifyz’ ui,yz), (422)
hi,zx - (f;(,:zw -fz'l{z:c’ ifzx’ ui7250)7 hi,zy = (fz?,czy7 z'l{zy’ ifzy’ ui,zy),

Bie = (Flos s Fonr 012)
1,22 T 1,229 Ji,zz) Ji,zzy Y,22)

Aided by the Gauss theorem in the four-dimensional space-time domain, the above

differential equations are recast into the following integral equations:

%hi,x:c ds = O, %hi,xy ~ds = 0, %hz,xz -ds = 0,
fhi,ya: -ds = Oa \%hi7yy -ds = O, \%hi,yz - ds = 0’ (423)
%hi,zm ~ds = O, \%h@zy -ds = O, \%hi,zz -ds = 0.

The space-time integration procedure is applied nine times to enforce flux conserva-

tion over all second derivatives. In the context of a fourth-fourth order scheme each
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second derivatives is expressed as a first-order Taylor series:

*

Uj oy = Wiga T Ui 2az AT + Ui guy DAY + Ui 5o AZ 4 Uj g0 AT
WUj gy = Ui,zy + ui,myxAx + ui’xyyAy -+ ui,wyzAz + umytAt
Uy = Uigz + Ui gza AT + Ui gzy AY + Ui 022 A2 + U 224 AL
sy = Uiyz + ui,yxxAx + ui,y:cyAy + ui,y:czAZ + ui,yxtAt
Wi gy = Wiy + Ui yya AT A Wiy AY A Uiy e A2 A U g AT (4.24)
Us = Wiz + Wigza AT + Wi gy AY + U yon A2 + Uy AL
izx — Wizz + ui,zxxAx + ui,zmyAy + Ui7zm2AZ -+ ui,zmtAt

*

Wi gy = Wiy + Wi yr AT + Ui 2y DY + Ui 2z D2 + Ui oy AL

*

ui7zz = Uj,zz + ui,zzxAI + ui,zzyAy + ui,zzzAZ + ui,zztAt
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The associated fluxes are also expressed as a first-order Taylor series:

(o) = [or A+ foeAa + fE0e Ay + [0 Az 4 fin At

1,2T 1,2T TTT TTZ zxt

(fioy )" = fiwy” + e Dr + [ Ay + [r2 Az + frr At

(f?ﬁ,y@)* — Z:t’:‘;ﬁyz,z + fix,%zAx + f;f:;cyz,yZAy + fzx:;cyszZ + f;f;cnyAt

i,Tz JLZX ,

FEgr) = Fo + Pl 4 fl Dy o+ [ERE0 + I A

,yx yYTx YYry YYrz
FEE) = FE 4 B SN S Ae o [ (4.25)

(gt )" = Fige™ + e w4 [l Dy + [i2 Az + [0 AL

Yz YYZT "YRY Y2z yzt

(o) = [o87 4+ e Aw + [P0 Ay + fE0 2 Az 4 fo0 7 At

1,22 1,2% zxx 2Tz zat

(F02) = fol2 4 fol Aw 4[5 5Dy + [0 Az + fiiE At

(FE0) = JE0° + FR0E00 4 UG A+ A 4 A

1,22 s

Since the procedure is the same for all second derivatives w; ., will be used as an

example. The integration over the side surface for w; ,, is expressed as

1,2,3 z,y,2
n—1/2
[(57:031)?5@] . = Z
I Si g
At i At i 1
N:ﬁ? (0'5 ;fxyt? +0.5fi5y + 6 iaye (A1 + Atz + Azg) +
. 1 n—1/2
o (B4 A 8) + 52 (B + By 4 D))
Jr
(4.26)
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The flux over the bottom BCE for w; 4, is:

n—1/2 Us 1 U 2y
[(E,Iy)ggtom] . = (Nztn)h |:éy + 24?/ (Azl + Al’2 + Ail?g + AZIM)
W U n—1/2
;Zyy (Ays + Aya + Ayz + Ayy) + ;‘Zyz (Azy + Azp + Azz + Az@} +
Jr

(Nout) ;, {“6@’ - “275 (Azy + Azy + Azg + Azs) +

' n—1/2
i (g + By + s+ D) + 2 (8 + Ay + B+ )]
Jr
(4.27)
[(F )3D]" — (NL) Uizy | Uiy (Axy + Azy + Axg + Axy) +
4,2y ) top i - in)j, 6 24 1 2 3 4
—uiz,zyy (Ayy + Ay + Ays + Ayy) + u;lyz (Azy + Azp + Azg + Az4)] t
Jr
(4.28)

(Nout) ; [uigy + u;’”jf”” (Azy + Axy + Ay + Axs) +

n
Ui zyy

24

(Ayl —+ Ayg —+ Ayg —+ Ay5) 22:242 (AZl + AZQ + AZg + AZ5):|

Jr
To calculate (u;4,)} at the new time step the flux over all BCEs associated with

cell 7 are summed together to obtain

Np
n 1 3D n—1/2 3p 1n—1/2
) = — S (| Fe)omon| .+ [(Fra) i) )
(uv y)] V;opCE — (|:( ’ y)bottom i ( ) y)szde i

It is important to note that all of the terms on the RHS are from the previous time

step, which makes this equation completely explicit. Just as it was with the one- and
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two-dimensional CESE schemes, the CESE scheme is completely explicit as long as

the unknowns are calculated in the correct order.

4.4 Three-Dimensional Central Differencing Procedure

In this section the central differencing procedure used to find the odd derivatives at
the new time step is illustrated. There are two primary methods to calculate the odd
derivatives, the CFL insensitive ¢ — 7 scheme|59, 61| and the edge-based derivative
(EBD) scheme [44]. Both method use a similar approach, only differing in how they
determine the locations to evaluate the Taylor series expansion at. TO proceed, this
section is split into two subsections. The first derives an arbitrary order ¢ — 7 scheme
and the second derives the arbitrary order EBD scheme. Both of these sections begin
by deriving the core scheme which calculates the first derivatives and then follows up

with a generalization to higher derivatives.

4.4.1 Three-Dimensional ¢ — 7 Scheme

As a preface the necessary geometry will be explained. First consider the current
cell at location jy and the surrounding cells denoted by j,. for r =1,2,..., Ny, where
Ny is the number of neighbors. For a tetrahedral mesh N, would be 4. These cells
exist at both the current time step, n, and the previous time step n — 1/2 giving
them the space-time location of (j.,n) r = 0,..., N, for the current time step and

(Jrsm —1/2) r = 0,..., N, for the previous time step. There are two important
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locations in each cell, (i) the solution point denoted by jX, (ii) the Taylor expansion
point denoted by jF. The derivation below can be applied to any type of mesh,
i.e. tetrahedral, hexagonal, prism, and four-sided pyramid, but for simplicity the
derivation will be restricted to tetrahedral meshes. In what follows is an outline
detailing each step required to calculate the first derivatives using the ¢—7 algorithm.

The first step is to determine the location of the Taylor series expansion points,
which is accomplished through the ¢ — 7 scheme detailed in|61].

at = 0.5(x0 + ;) +0.5(x;, — 2y )CFL

Ir

where C'F'L is the local CFL number associated with cell (jo,n —1/2). The next step

is to write a Taylor series expansions from (jj,n) to each (j;,n) r=1,..., Ny.

A A—aA—a—b n

n aa—l—b-{—cu,

*x( 4+ . 7
[ Gl =2 ZO (axaaybazc> .
‘ Jo (4.29)

a b c
(%‘i - %) (yjﬁ - yjox) <ij+ - Zjé)

alblc!

By applying Eq. (4.29) to each of the surrounding cells N, equations with three+ NV,
unknowns per governing equation are obtained. The unknowns are the first deriva-
tives of the conserved variables and the values of the conserved variables at the
expansion points, [uf(fr,n)]?ox j=1,...,N,.

Next the unknowns at [u;‘(jj, n)];;X are approximated by a Taylor series expan-

sion from ;X at the previous half time step to j at the current time step, i.e.
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1/2 A A-aA—a—bA—a—b—c aBu n—%
!/ -+ n— o i
il =2 (m)

" (4.30)

a b c
(xjr* - xj%) Yjr — yjﬁ) (Zji - Zj%) (At)d

Substituting Eq. (4.30) into Eq. (4.29) and moving the unknowns to the LHS yields:

[ui,xij:r + ULyij:r + uz,zAZ]j}:g = [u, (j+’ n)} 7_1/2 —

7 ]X
a b c
2A:A—aA—a—b< aa+b+cui )" <A:L’]:r> <Ay]:r> <AZJT+> (431)
@y z¢ 1hlel ’
a=0 b= c=0 a[lf ay 02 i Cl.b.C.
where Az = @1 — L Ay+ = Y+ — Yz Azyy = z;3 — 2 and (a,b,c) #

(1,0,0),(0,1,0),(0,0,1).

By applying Eq. (4.31) to each neighboring cells an overdetermined system of
equation consisting of three unknowns and N, equations is formed. This is advanta-
geous because it allows for multiple solutions to be determined and then select the
most appropriate solution through a weighting procedure. To determine the possi-
ble solutions the equations listed in Eq. (4.31) are grouped into sets of three. For
example a tetrahedral mesh has four surrounding cells and would be grouped as

[(1,2,3),(1,2,4),(1,3,4),(2,3,4)]. Taking the first triplet from the set results in the
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following equation:

A[L'1+ Ay1+ A2’1+ (uz);l)
ALE‘2+ Angr A22+ (uz)él)
Al’3+ Ay3+ AZ3+ (Uz)gl)
n—1/2 A
[ug(l-i_’n)hx _Za 0 b 0
n—1/2 A
[ (2%, )5 = i sy
n—1/2
b 0

[ (3%, )] = oo

for (a,b,¢) # (0,1,0),(1,0,0),(0,0,1).

A a—b < gatbtey, )n Amﬁ)a(Ayﬁ)b(Azﬁ)c
C 0 8x“8ybﬁzc x alblc!
—b aa+b+c n AI2+)E(Ay2+>b(A22+>C
c 0 8x“8ybﬁzc i alblc!
A a—b aa+b+c n AI3+)E(Ay3+>b(AZ3+>C
C 0 Bmaaybazc i alblc!
(4.32)

Using Eq. (4.32) on all groupings of equations will generate multiple solutions to u; ,

u;y and w; .. The superscript (1) for the unknowns in Eq. (4.32) represents the first

possible solution for wu; ,, u;, and u; .

The final step is to determine the smoothest solution through a weighting algo-

rithm. Any of the previously derived weighting schemes are applicable to the higher

order CESE method without modification. In the present investigation the W2[61],

S2|72| and Eq. (3.49) schemes are used.

This same procedure is easily adapted to determine any of the odd derivatives.

For example to find the variables w; zyz, U;zyy, and ;.. consider the Taylor series
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expansion of u; ., from j; to j;f

n
Uy = [Uiay + Uioyo DTj+ + Uiayy AYj+ + Uiy Az ] ot

A AZ—fLA—a—b< §rtatbrey, )” Az® Ayb Az
0

o t1Oybtlgzetl al b !

(4.33)

Jo

for a,b,¢ # {(0,0,0), (1,0,0),(0,1,0),(0,0,1)}.

The first four Taylor series coefficients are listed explicitly. This is important because
the alternative rule for differentiation is not used and this will decrease the ambiguity
for the terms listed in the summation.

An expression for the Taylor series expansion from the previous time step to the

current one is:

n n—1/2
]
At TL—1/2
|:ui’xy + Wizyz (Al’ﬂr) + Wi zyy (ijr) + Ui, zyz <AZ];L> + Ui gyt 9 :|
ir
— A—a— n—1/2 a b c (434)

A AX—fa—b—c b—c ( Prratbretd, ) (Ag’jj> <iji> (Azjﬁ> Agd

a+1 b+1 cAH+d | ] ] |
a=0 b=0 c¢=0 d=0 Oat1oyP+1ozc0t | a. b! c! 2d!

JIr

for (a,b, ¢,d) # {(0,0,0,0),(1,0,0,0),(0,1,0,0), (0,0,1,0) }.

3
1,2y

By applying the same procedure to u;_, that was used for u; a solution for w; 4.,
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Ui, zyy; and Uj gy 1S derived:

r 1n—1/2 n
ASL’1+ Ay1+ A21+ (u2>§,;1y)x u;my(l*,n) Lx —(Ui@y)jg
r Tn—1/2 n

Argr Ayoe Azgr | |(u)iny| = | |way(25i0)| = (wia) (4.35)
(1) IR T L n
Al’3+ Ay3+ A23+ (uz)xyz ui,:cy(g ,n) 4 —(Ui@y)jg

Equation (4.35) represents one possible set of solutions for w; sy, i zyy, and u; zy..
When all possible solutions are found they are weighted together to find the vales at
the new time step. This procedures is then applied to all of the other third derivatives.
Although this procedure was limited to a fourth-order scheme it is easily expandable

to any desired order by including higher order Taylor series coefficients.

4.4.2 Three-Dimensional EBD Scheme

As it was with the two-dimensional scheme the EBD method may also be used to
compute the odd derivatives. For this method each expansion point is calculated in
the same fashion as the two-dimensional scheme. It should be noted that this method
has not been developed for cells with four nodes per face. To begin, the expansion

points are found via:

N; = Nog+Q(N; — Ny), fori=1,2,34 (4.36)
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Where Ny is the centroid of the central tetrahedron and N; are the vertices of the
central tetrahedron, and €2 is an adjustable parameter that controls the amount of
dissipation added. As the value of €2 increases the amount of dissipation increases as

well. For this investigation the function used to determine €2 was

Q= Maz (Qnin, CF LD n4z) -

The only requirement of this equation is €2,,;, > 1.

The next step is to determine which solution points are used to calculate u; at
each expansion point. Following the same procedure used in the two-dimensional
EBD scheme, a single solution point is used to calculate u; at each expansion point.
For example, assume that the shared face of cells j, and j; contains the vertices

N1, Ny, and N3. This forms a system of equations which is used to determine one
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possible solution for u; zye, Ui zyy. and w; 4,.. This system of equations takes the form:

Az Ay Az| (@),

Aws Ays Az |(ul))”

Az Ayy Azl |(uf)n

Jo
[ qn—1/2 A A A—a—b atbre, \" (Azi)” Ays b Az; ]
(Ué)? . D a0 b:0a Zc:oa (aiaaybauz’c>]x (821) (a!bll) (821) (4.37)
L . 0
o r qn—1/2 A A A—a—b [ gatbtey, o (As)” Ays b Azs)©
o _(Ugg_ 1% - Za:O b:Oa Zc:(]a (axaaybg?c)jg ( 2) (a!bzl) ( 2)
r qn—1/2 A A A—a—b atbte, \" (Azs)” Aya b Az )°
(U;)g 1% - Za:O b:Oa Zc:Oa (aawaaybcauzzc>jx ( 3) ( a!b?;) ( 3)
L - 0 .

for (a,b,¢) # (0,1,0),(1,0,0),(0,0,1),

n—1/2

where [(u;)ﬂ is defined by Eq. (4.30). Equation (4.37) is then applied to the

1X

other three surrounding cells. This results in four possible solutions for the first

derivatives: (uz(zi,);‘o, (uz(g);lo, and (ugg)?o These values are than weighted together to

obtain the values of (u;.)%, (uiy)%, and (u; )% at the new time step.

By applying the same procedure to u;,, that was used for u; a solution for u; sy,

Ui, zyy; and Uj gy 1S derived:

r an—1/2 n
A.ﬁ(]i Ayi A’Zi (uZmyx>(1) _u;,my_i - (ui,my)jg<
T 1n—1/2 n

Axry Ays Az (uzxyy)(l) = _u;xy_é — u,~7:,;y)joX (4.38)
. r o, n—1/2 n
Al’g Ayf’, AZS (uzrf:cyz>( ) _ui,a:y_ 3 - (ui,my)jg

Equation (4.38) represents one possible set of solutions for w; yy., Ui zyy, and w; zy..
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When all possible solutions are found they are weighted together to find the vales at
the new time step.

This procedures is then applied to all of the other third derivatives. Although this
procedure was limited to a fourth-order scheme it is easily expandable to any desired

order by including higher order Taylor series coefficients.

4.5 Numerical Procedure

Since both the even- and odd derivatives requires information of the unknowns at the
new time step, the order in which the various derivatives are updated is important
to ensure that the procedure is explicit. The procedure outline in this section is
constrained to a fourth-order scheme but the this method is easily expanded to sixth-
, eighth- or even higher-orders of accuracy. For a fourth-order scheme, the order in

which the values are calculated is:

1. Calculate the temporal derivatives of the conserved variables, the fluxes, and

the spatial and temporal derivatives of the fluxes, at the previous time step.

2. Apply the original second-order CESE scheme to the second derivatives of the

unknowns, e.g. (U;)zz, (Ui)y, (Wi)az, - .., at the new time step.

3. Apply the central difference procedure to calculate the third derivatives of the

unknowns, e.g. (4;)szzs (Ui)zwy, (Wi)zzzs - .-, at the new time step.
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4. Apply the space-time integration procedure to calculate the conserved variables,

u;, at the new time step.

5. Apply the central difference procedure to the first derivatives of the unknowns,

to calculate (u;),, (u;)y, (u;), at the new time step.

4.6 Results and Discussions

To assess the accuracy of the three-dimensional, unstructured hyperbolic solver, the
following benchmark problems are solved by the newly developed fourth-order, three-
dimensional CESE method: (i) a single scalar advection equation to assess the
convergence rate, and (ii) the Euler equation for Mach 3 supersonic flow passing over

a spherical blunt body.

4.6.1 Advection Equation for Convergence

A single scalar advection equation, Eq. (4.39), is solved by the newly developed fourth-
order CESE method with a series mesh refinement to assess the order of convergence

of the new scheme.

e i — =0 4.39
I+ayay+a ( )
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The solution of the above equation assumes the following form

u = sin(a,r + ayy + a2 + ait), (4.40)

The computational domain is a cube. The length of each side line segment of the
cube is 2. Over all 6 surfaces, periodic boundary conditions are imposed. The wave
speeds are set at a, = a, = a, = 1 and @, = —(a? + CLZ + a?). The simulation is
run until the non-dimensional time reaches 25. The time period allows the wave to
propagate through the domain 25/(27) times. To determine the rate of convergence,
the Ly norm is calculated and compared against a characteristic length taken to be
(Volume/ncell)~'/3 where ncell is the number of cells. The result of the simulation
is shown in Fig. (4.4). A best fit line is drawn to show the convergence rate, which is

at 4.3 and 2.6 for the fourth- and second-order CESE methods, respectively.

4.6.2 Supersonic Flow over a Spherical Blunt Body

The objective of this case is to assess the capability of the new fourth-order CESE
method in dealing with solution discontinuities. To accomplish this, supersonic flow
over a sphere is considered. In this simulation the free stream Mach number is 3, the
free stream pressure is 1 bar, and the free stream density is 1.23 kg/m3. The specific
heat ratio of the air is 1.4, and the gas constant is 287.15 J/kg K. The radius of the
sphere is 0.5 m. The quality of the numerical result is assessed by the post shock

density, shock standoff distance and the shock profile.
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Figure 4.4: Convergence test for the three-dimensional convection equation.
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The simulation was run for 5 thousand iterations at an average CFL number of
0.533. The mesh is composed of roughly 4.4 million unstructured tetrahedrals.

The calculated post shock density is 4.613 kg/m?, which compares favorably to
the reported value of 4.744 kg/m3. The calculated shock standoff distance is about
0.11 m, which compares well with 0.1 m predicted by Ambrosio and Wortman’s|77]

relation,
A = 0.143R e>*V/M% (4.41)

where R is the radius of the sphere and M, is the free stream Mach number. Billig|78§|

showed that the shock profile can be represented by the following relationship

0.5
*tan? 0
r=R+A— R.cot’0 (1%—%) —-1], (4.42)

where A is the shock-stand-off distance given by Eq. (4.41), 6 is the Mach angle which

is equal to sin~'(1/M,.), and R, is the radius of the curvature which is equal to
R, = 1.143R (0-54/(Mec=1)"

A numerical Schlieren image constructed by taking the gradient of density shown in

Fig. (4.5). Points in the figure show the shock profile generated by Eq. (4.42). The
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Figure 4.5: Convergence test of using fourth-order CESE code to solve a three-
dimensional scalar advection equation.

figure shows the calculated shock profile generated by the new fourth-order CESE

code compares well with the experimental relation shown in Eq. (4.42).
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CHAPTER 5

NUMERICAL IMPLEMENTATION

The following section focus on the implementation of the various algorithms derived
in Chapters 2-4. Previously the presentation of the these algorithms focused on
generality and readability. In contrast, this chapter will focus on algorithms that
are optimized for a particular set of physics or efficient algorithm deployment. This
chapter will also provide an overview of SOLVCON|67|, which is an unstructured

CFD framework used during the course of the research.

5.1 One-Dimensional CESE Method

In Chapter 2 a generic method was used to relate the fluxes to the conserved variables,
in this section another method is provided that uses the generalized Leibniz rule to
express the derivatives of the product of two functions. This method was previously
shown for the Euler equations by Dyson |79] and later by Dumbser and Munz [37].

To begin let F(x,t) = G(x,t)H(x,t) then any derivative of F may be expressed
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as

ogntm F n.m grtm—k=lg gk+lgy
danom IZ < ) ( ) D= katmgl Dk ot (5.1)
It should be noted that this procedure requires that all derivatives less than or equal
to n +m be known for G and H.

It is possible to rewrite Eq. (5.1) to calculate any derivative of the quotient of two
functions. To begin, take G(x,t) = F(x,t)/H(x,t) then any derivative of G may be

calculated as.

for (k,1) # (0, 0)

h Qxn—kPtm=1 kOt

an—i—mg B 1 gntm F n i n m an—i—m—k—lg 8k+lH
dxnotm — h | Qxnotm

(5.2)

This equation requires that all derivatives less than or equal to n +m of both F and
H be known. The values G on the RHS of Eq. (5.2) only contain derivatives less than
the one of the LHS. So as long as the derivatives of G are calculated in increasing
order all values on the RHS are known. This means that no values of G needs to be
known at the start of the algorithm.

These two equations are used to determine the flux and their spatial and temporal
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derivatives. To begin take the one-dimensional Euler equations

p

0

o
pe

Let uy,us, ug represent the density, momentum and energy and fy, fo, f3 be there

respective fluxes. Then the Euler equations are rewritten as:

Uy
0
ot | 2
us

U2

(v = Dug + 1/2(3 — y)u/uy

Yugug/uy — 1/2(y — 1)ud/u?

=0 (5.3)

Using Eq. (5.3) with Eq. (5.1) the fluxes and their derivatives are then expressed

as a function of the conserved variables and their derivative.

an-l—m fl

oz ot™
8n+m f2

orrotm

0y
oxmotm

- ox™otm

3 — v 0" Mg

> ()

2

an—i—m—k—lus

— 18n+m—k—lu2U 8k+l,u
’ygxn—katm—l

2 Oxnkotm=t | OxkOt

(5.4)
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Velocity and kinetic energy are still present in Eq. (5.4) and are evaluated as:

8n+m,u B an—i—m % B
oznotm — Oxnot™ \wuy )

1 8n+m n m 8n+m k— lU 8k+lu1
Ut o f
(51 x"@tm — ZZ ( ) ( ) Oxn—ktm—1 gkt or (/{J,l) # (070>
(5.5)
and
an-i-muzv n m n m 8n+m—k—lu2 8’“”1}
W o ps ; (k) ( [ ) 8x"—k8tm—l 8l’k8tl (56)

Since the LHS of the above equation is always the highest-order derivative of the
unknown, everything on the RHS of the equation is known.

The procedure presented in Algorithm 1 is capable of calculating all of the required
spatial and temporal derivatives of the conserved variables and fluxes. The only
requirements are the conserved variables and their spatial derivatives. This procedure

is inherently expandable to any desired order.
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Algorithm 1 Procedure used to calculate the flux and temporal derivatives for the
one-dimensional Euler Equations

N < Numerical order
for all 0 < m < N do
for all 0 <n < N —m do

8n+m an+m 8n+m k—1 akJrl
Lo e ik [ G = S0 X () (7) it Gt for (k1) # (0,0)]

n+m n+m—k—1 k+l
88%"8?’3}) = Zk =0 Zl =0 ( ) ( l ) gm"*katmg% aamkatl

an+mf an+mu2

gmiatm oz ot™ N N

T fa Ot Mys 33—~ 9" T M ugu

()i 15

Oxmotm Oxmotm 2 Ornotm

8n+mf3 n m n m 87L+m7k7lu3 ~— 6l+m k— lugv 6k+lv

sain < 2o 2o (1) (1) (Y ammmamat — 55 Gorramt ) anran
end for

if m < N —1 then
forall0<n< N-m-—1do

an+m+1ul an+1+mf1
Dz otm+1 T dgntigm
an+m+1u2 an+1+mf2
Oxnotm+1 - Oxnt1loem
an+m+1u3 an+1+mf3
Oxnotm+1 - Oxntloem
end for
end if
end for

5.2 Multi-Dimensional Flux Calculation

The calculation of multi-dimensional fluxes presented in Chapters 3 and 4 are nei-
ther numerically efficient nor are they easy to extend to orders higher than fourth.
Therefore, an approach, similar to the one used in Section 5.1, is applied to the
multi-dimensional Euler Equations. What makes the two- and three-dimensional
CESE methods more difficult than the one-dimensional CESE method is that the
alternative rule for calculating the derivatives of the unknowns and the flux functions

is inapplicable to the spatial derivatives. To proceed, let F be a function of three
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variables, F (W, Wy, U3) = G(WUy, Uy, U3)H (W, Uy, W3). Since the current research is
limited to fourth-order in both two- and three-dimensions it is possible to simplify

Eq. (5.1) and Eq. (5.2).

OF 0TGN
8\1/1_2, oVt owt
1 . . e
82—z—jg 81—%—]7_[
axp 8\112 ;Z oUWl vl 9w
1

as—i—j—kg ai+j+ka
OV, 00,0 aquaqu 2;;]; QU= Wik 9wl oW oWk

Where Uy, Uy, U3 may be any combination of x, y, 2z, and ¢. For easy reference let

1 . .
oG d'h

1

a2—i—jg ai—l—ij
Py, (G, H) —
e 2;; oUW 9w o]

1 1 1

3—i—7—k i+7+k
Pwlwzwg(g,h)zzzz 8_4 ]_-g_ 8.+]+.H

e SR e SN A A
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These equation are easily modified to find the derivatives of the quotient of two

functions.

oOF OH\ 1
H

—

PF ¢ 0G0 1
HF) = [ o - W
QM 7) = | Guaw, ~ 22 puT el owion] | T

1=

for {(Z j) # (0, 0)}

B 83—7,—]—k‘g az+y+k7_[ 1
Quuwas(G.FF) =\ 54 Gu,00, axpga\pg ;ZZ OU Ty U 0wl 0wk | H

0 =0

for {(i,,k) # (0,0,0)}

The Euler Equations may be written in the following generic form:

dp opv; 0
ot 8xj n
apv Ndim
8t2 + ]Zl pviv; +pd; =0 fori={l,..., Ndim}
Ndim

9]
pe+z (pe +p)v; = 0.
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Pressure and velocity can be expressed in terms of the primary unknowns, or the

conserved variables, i.e., u;:

(pvi)
P

Ndim PV, 2
p=(v—1)|pe—05p Y (p])
J

v =

The numerical procedure used to calculate the spatial and temporal derivatives of the
fluxes and the temporal derivatives of the conserved variables uses a similar method
as the one-dimensional method. For a two-dimensional Euler system let uy, us, us,
and w4 represent the conserved variables p, puv,, pv,, and pe and fY, f3Y, f3Y,
and f;"Y be their respective fluxes. Since the order of differentiation for the spatial
derivatives makes a difference the algorithm used to calculate the derivatives of the
fluxes and conserved variables are more difficult. As such, instead of using a set of
nested for loops, like Algorithm 1, a single temporal for loop is used and the spatial
loop is replaced by a set of derivatives that changes based on the current temporal

loop.
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Algorithm 2 Procedure used to calculate the flux and temporal derivatives for the
two-dimensional Euler Equations

N 4
for all 0 <m < N do
for all n in ¥[m| do
Uy < U[m,n, 1] Yy U[m,n,2] V< Um,n,3]

vy .
8\1118\11}/28\113 - Q‘I’[mvn} (u27 s /Uw)

U .
m — Qulmn] (u3, u1;vy)

0 u.
srr; — (1= 1) (5urotsr; = 0.5Pagma (U2, v2) = 0.5Pg ) (3, )

off — Oug
8\1118\1’/28\1’3 OV10V20V3

of! — Ous
8\1118\1’28\1’3 OV10V20V3

8\1118\1126\113 P (u2, vz) + 6\1/18\1128\113

)

ofy

aqflaqua\y; < Pojmn)(uz, vy)
)

(
m < Pwjmn)(u2, vy
afy op
W\Ifgzﬁ\lfa < Poimn (us, vy) + TU,00597;
I P P (Us + P, vg)
ofd
s 0097; < Peimn)(us+ P vy)
end for
if m < N —1 then
for all 0 <7 <4 do

for all n in ¥[m + 1] do

du; il off of!
O¥[m+1,n] = T 9¥[m+1,n] <8:c8t T+ Oyot—1

end for
end for
end if

end for

The negative exponent in Algorithm 2 means that the temporal derivatives is

reduced by one, e.g.

o ( of | of
Oxdt \ Oxot—1 = Jyot—1

ofr . of!
Jxdx  Oyox
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In Algorithm 2 the values of ¥ are

derivatives with no temporal derivative
v[0,1] ={0,0,0} wI[0,2] ={z,0,0} P¥[0,3] ={y,0,0}
v0,4] = {z,z,0} ¥[0,5] ={z,z,z} P[0,6] ={z,x,y}
0,7 = {x,y,0}  ®[0,8] = {x,y,x} ¥[0,9] = {z,y,y}
v[0,10] ={y,z,0} ¥[0,11] ={y,z,z} W¥[0,12] ={y,z,y}
w0, 13] = {y,y,0} ¥[0,14] ={y,y,z} ¥[0,15] = {y,y,y}
Derivatives with one temporal derivative
w[l,1]={t,0,0} Ww[1,2] ={z,t,0} P[1,3] ={y,t,0}
W(l, 4] ={z,z,t} P[1,5] ={x,y,t} P[1,6] ={y,x,t}
UL, 7 ={y,y,t}
Derivatives with two temporal derivative
W2, 1] ={t,t,0}  W[2,2] ={x,t,t} V[2,3] ={y,t,t}
Derivatives with three temporal derivative

W3, 1] = {t,t,t}

In Algorithm 2, Qum.n) = Quim,n,1]9[mn,2¥m,n,3)-

The same procedure is repeated for the three-dimensional Euler equations. In
terms of methodology, The three-dimensional CESE method is nearly identical to the
two-dimensional CESE method. One difference is that the number of unknowns that

must be calculated is significantly larger. First, let uy, us, us, ug and wus represent
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the conserved variables p, pv., pv,, pv,, and pe. Also let fi"

and f2'¥% be their respective fluxes.

Z, f;7y7'z’ f§7y7'z, fjf7y7z,

Algorithm 3 Procedure used to calculate the flux and temporal derivatives for the

three-dimensional Euler Equations

N 4
for all0 <m < N do
for all n in ¥[m]| do

Uy <~ Uim,n, 1] Yy VY[m,n,2] U3+« VU[m,n,3|

76 .
8\1/16\11)126\113 — Q‘I'[m,n} (w2, u1;vs)

U .
8\111%\1?28\113 — Q‘I’[m,n} (Ug, Uy, Uy)
U .
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Algorithm 3 Procedure for calculating fluxes and their temporal derivatives of the
three-dimensional Euler Equations (continued)

if m < N —1 then
for all 0 <i <4 do
for all n in ¥[m + 1] do

x Y z
% = _6\If[n?+1,n} (85&;; T+ aja]; T+ azaa]; 1)
end for
end for
end if

end for

In Algorithm 3 the values of W are

derivatives with no temporal derivative

(0,1 = {0,0,0}  ®[0,2] = {x,0,0} ¥[0,3] ={y,0,0} W[0,4] = {z,0,0}

v0,5] = {z,z,0}

v0,6] = {z,z,x}

w[0,7 ={z,z,y}

v0,8] = {z,z, 2}

©[0,9] = {z,5,0}  ©[0,10] = {z,y,x} [0, 11] = {z,y.y} ¥[0,12] = {z,y, 2}
W[0,13] = {2,2,0} W[0,14] = {z, 2,2} ®[0,15] = {z,2,y} ®[0,16] = {z, z, 2}
©[0,17) = {y, 2,0} ©[0,18] = {y,z,z} ¥[0,19] = {y.z.y} ¥[0,20] = {y,z, 2}
w[0,21] ={y,y,0} ®[0,22] ={y,y,2} ¥[0,23]={y,y,y} ¥[0,24] ={y,y,2}
W[0,25] = {y, 2,0} ©[0,26] = {y,z, 2} ©[0,27] = {y,zy} ¥[0,28 = {y,z 2}
©[0,29] = {z,2,0} ©[0,30] = {z, 2,2} ®[0,31] = {z 2.y} ¥[0,32] ={zz, 2}
W[0,33] = {2,5,0} W[0,34] = {z,y,2} ¥[0,35] = {z,y,y} ¥[0,36] = {z,y,2}
W[0,37) = {2,2,0} W[0,38] = {z,2,2} ¥[0,39] = {z 2y} ¥[0,40] = {z,2 2}
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derivatives with one temporal derivative
Wi, 1] ={t0,0} W[1,2] ={x,t,0} W[1,3]={y,t,0} P[1,4]={z1¢0}
W[l,5] ={z,z,t} Y[1,6] ={x,y,t} Y[1,7]={x,z1t}
L8 = {y, .t} W[LI = {y,y,t} W[L,10]={y, 2t}
Wl 11 =4z, t} ¥[1,12|={zy,t} W[, 13] ={z, 2t}
derivatives with two temporal derivative

2,1 = {t,t,0}  ©[2,2] = {z,t,t} ©[2,3] = {y.t,t} ©[24] = {2t}

derivatives with three temporal derivative

W[3,1] = {t,1,1}

5.3 SOLVCON: Numerical Framework

This section details how the various equations derived in Chapters 3 and 4 are de-
ployed in the numerical framework. During the development of the multidimensional
CESE code the CFD framework, SOLVCON, was chosen to aid in the development
effort. By using the framework provided by SOLVCON more time could be dedi-
cated to implementing the new algorithms rather than basic code development. Such
basic code development includes features common to all contemporary high perfor-
mance CFD codes designed to run in a parallel environment such as: 1/O, domain
decomposition, and message passing.

SOLVCON was developed in house at the OSU CFD lab by Chen|67] and was
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written in a combination of Python and C. Python provides the object orientated as-
pect of the framework and the C code is used to implement the numerical algorithms.
In other words Python provides the logic and call structure necessary for the program
to run while the numerically expensive routines are written in C for efficiency. SOLV-
CON was originally developed as a second order unstructured CESE solver. Since
the second- and fourth-order versions of the CESE algorithms are very similar, only
the part of the codes related to the space-time integration and the data structure had
to be modified for the implementation of the fourth-order CESE method.

The majority of the algorithms used internally by SOLVCON for evaluating the
fluxes across the bottom/top and side surfaces of a typical CE are the same for two-
and three-dimensional CESE methods. This similarity greatly simplifies the work
required to maintain the code. The difference between the two- and three-dimensional
procedures can be easily handled by having the variable length loops or through pre-
compiler macros. The resulting treatment compiles two separate libraries from the
same source code. One library for the two-dimensional solver and another for the
three-dimensional solver.

Although the same numerical algorithm is used for both two- and three-dimensional
problems, the procedure is more readable when the algorithm for two- and three-

dimensional problems are separated.
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Algorithm 4 Algorithm for calculating flux through the side surface for the two-
dimensional CESE method.
for all Cells in Mesh do
tcl < current cell
Figelicl] < 0;
for all Adjacent Cells of icl do
jel <= current adjacent cell
x; < SolutionPointCoordinate(jcl)
1 face < shared face
xy < CellCenterCoordinate(jcl)
*f;l < Flux calculated at adjacent cell, jcl
for all nodes on iface do
X1 < NodeCoordinates .
Fyaelicl] += [Eq. (3.24)](x1, %2, x5, At f1)
end for
end for
end for

where Fygelicl] is the sum of the flux through all side faces for cell icl and f*fcl

contains all derivatives of the flux.

Algorithm 5 Algorithm for calculating flux through bottom surface for the two-
dimensional CESE scheme
for all Cells in Mesh do
tcl < current cell
for all Adjacent Cells of icl do
jecl < current adjacent cell
i face < shared face
u, < solution at jcl from previous time step
Fyottom (icl, i face) < 0
x; < CellCenterCoordinate(jcl)
Xy < NodeCoordinates(first node on face)
x4 < NodeCoordinates(second node on face)
x3 < CellCenterCoordinate(icl)
x; < SolutionPointCoordinate(jcl)
Fbottom ('éd> iface) += [Eq (330)] (Xla X2, X3, Xj, ujcl)
Fbottom (id> iface) += [Eq (330)] (X1> X3, X4, Xj, ujcl)
end for
end for

where Fyopom(icl,iface) is the sum of the flux through all bottom faces for cell icl
and uj, contains all derivatives of the conserved variables.
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Algorithm 6 Algorithm for calculating flux through top surface for the two-
dimensional CESE scheme
for all Cells in Mesh do
tcl < current cell
Fioplicl] <0
u’, < solution at icl from current time step
x; < SolutionPointCoordinate(icl)
for all Adjacent Cells of icl do
jel < current adjacent cell
1 face < shared face
inode < current node
x; «— CellCenterCoordinate(icl)
Xy < NodeCoordinates(first node on face)
x3 < CellCenterCoordinate(jcl)
x4 < NodeCoordinates(second node on face)
Fioplicl] += [Eq. (3.33)](x1, X2, X3, X;, Wicl)
Fioplicl] += [Eq. (3.33)](x1, X2, X4, X;, Wicl)
end for
end for

where F,,[icl] is the sum of the flux through all top faces for cell icl and u}, contains
all derivatives of the conserved variables.

Algorithm 7 Algorithm for calculating flux through the side surface for the three-
dimensional CESE scheme
for all Cells in Mesh do
tcl < current cell
Figelicl] < 0;
for all Adjacent Cells of icl do
jel <= current adjacent cell
x; < SolutionPointCoordinate(jcl)
x3 < CellCenterCoordinate(jcl)
1face < shared face
*fcl < Flux calculated at adjacent cell, jcl
for all edges on iface do
x1 < NodeCoordinates( first node on edge)
Xy < NodeCoordinates(second node on edge)
Figelicl] += |Eq. (4.15)] (x1, %2, X3, X;, At, f;”;l)
end for
end for
end for

where Fyqelicl] is the sum of the flux through all side faces for cell icl and f*fcl

contains all derivatives of the flux.
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Algorithm 8 Algorithm for calculating flux through the bottom surface of a CE in

the three-dimensional CESE method.

for all Cells in Mesh do
tcl < current cell
for all Adjacent Cells of icl do
jel <= current adjacent cell
i face < shared face
u, < solution at jcl from previous time step
Foottom (icl,iface) < 0
for all edges on 7 face do
x1 < FaceCenterCoordinates(iface)

Xy < NodeCoordinates( first node on edge)
x3 < NodeCoordinates(second node on edge)

x4 < CellCenterCoordinate(jcl)
x; < SolutionPointCoordinate(jcl)

Fyottom (icl, i face) += [Eq. (4.19)](x1, X2, X3, X4, Xj, Uje1)

x4 < CellCenterCoordinate(icl)
)

Fyottom (icl, i face) += [Eq. (4.19)](x1, X2, X3, X4, Xj, Uje1)

end for
end for
end for

where Fyoom(icl,iface) is the sum of the flux through all bottom faces for cell icl

and uj, contains all derivatives of the conserved variables.
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Algorithm 9 Algorithm for calculating flux through top surface for the three-
dimensional CESE scheme
for all Cells in Mesh do
tcl < current cell
Fioplicl] <0
u’, < solution at icl from current time step
x; < SolutionPointCoordinate(icl)
for all Adjacent Cells of icl do
jel <= current adjacent cell
it face <— shared face
for all edges on 7 face do
1node <— current node
x1 < FaceCenterCoordinates(iface)
Xy <— NodeCoordinates( first node on edge)
x3 < NodeCoordinates(second node on edge)
x4 < CellCenterCoordinate(jcl)
Fiplicl] += |Eq. (4.20)](x1, X2, X3, X4, Xj, Uic)
x4 < CellCenterCoordinate(icl)
Fioplicl] += [Eq. (4.20)](x1, X2, X3, X4, X;, icl)
end for
end for
end for

where F,,[icl] is the sum of the flux through all top faces for cell icl and u}, contains
all derivatives of the conserved variables.
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5.4 Call Structure of the Fourth-Order CESE Method

The fourth-order numerical procedure detailed in Section 3.5 and Section 4.5 are not
an efficient use of computational resources. To make an efficient computational algo-
rithm requires the determination of which variables to store for future use and which
ones will be recalculate as needed. This decision is highly dependent on the compu-
tational architecture that the code is running on. For example on a vector machine,
such as GPUs, the amount of resources dedicated to floating point operations is much
greater than that for fetching memory, so storing variables for future use may not be
as efficient as calculating them on the fly. On the other hand, the CPU is much more
efficient at retrieving memory then the GPU so storing variables for future use may
be more efficient. The problem faced in development of the numerical algorithms was
that a large amount of memory needs to be stored in each cell.

A fourth-order CESE scheme requires the storage of 30 doubles for the two-
dimensional CESE algorithm and 80 doubles for the three-dimensional algorithm.
The storage requirements takes into account the requirement that the primary vari-
ables needs to be stored at two different time steps. Compare this with the second-
order scheme which requires 6 and 8 doubles per governing equation for the two-
and three-dimensional schemes respectively. Ideally there are several other variables
associated with the CESE scheme that could be cached for future use. For example
the temporal derivatives of the conserved variables, the fluxes and their spatial and

temporal derivatives, as well as the integration over the bottom, top and side surfaces.
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The cost associated with caching each of the variables is sown in Table 5.1. Since

the memory requirement of the mesh is relatively small they are not included in this

table.

Table 5.1: Table of variables and their storage requirements for a fourth-order CESE

scheme
2D 3D
Primary Variables 30 80 || per governing equation per cell
Temporal Derivatives 11 18 || per governing equation per cell
Fluxes all derivatives 52 164 || per governing equation per cell
Top surface integrals 10 20 per cell
Bottom surface integrals 10 20 per neighboring cell per cell
Side surface integrals 20 60 per neighboring cell per cell

Based upon how often the values are used, how often they change and how expen-

sive they are to calculate the only additional variables that are cached for future use

are the temporal derivatives of the primary variables and the top/bottom integrations

results. Even though the side integration does not change during the simulation it

requires quite a bit of memory and are relatively quick integrations. The motivation

behind caching the temporal derivatives is that they are used in all of the routines dur-

ing each temporal step. The fluxes and their derivatives requires the most amount of

memory to store and, depending on the governing equation, could potentially be the

most expensive variables to calculate. As such a scheme that minimizes the number

of times they need to be recalculated is paramount to an efficient code. Algorithm 10
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presents a more numerically efficient procedure than the ones outline in Section 3.5
and Section 4.5. This method minimizing the number of times the flux needs to be

recalculated.

Algorithm 10 Outline of the numerical procedure.

for all Time in Simulation do
for all Cells in Mesh do
1cl < current cell
soltlicl] < Calculate the temporal derivatives of the primary unknowns w;
end for
for all Cells in Mesh do
1cl < current cell
for all Neighboring cells do
jecl < adjacent cells
solt «— solt[jcl]
F + Calculate the fluxes and their derivatives
Calculate the second derivatives of u; by space-time integration of the
additional equations
Bottom and side surface space-time integration for w;
end for
end for
for all Cells in Mesh do
Calculate the third derivatives of wu;
end for
for all Cells in Mesh do
Top surface space-time procedure for calculating the conserved variables u;
end for
for all Cells in Mesh do
Calculate the first derivatives of wu;
end for
end for

In Algorithm 10, the use of brackets | | signifies that a variable is either being

stored or retrieved. The key difference between this procedure and the ones outlined
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in Section 3.5 and Section 4.5 is that the space-time integration is divided into parts
that are either dependent on the solutions at the previous time step or the solutions
to be solved at the current time step. The values of the flux functions are readily
calculated once the primary unknowns are known. Thus, the operation count of
calculating the fluxes is reduced by almost half. By using this procedure, the fluxes
need to be calculated once during the calculation of the temporal derivatives and
again Nyqe times during the space-time integration over the surfaces of the cell.
Here Nyqe is the number of surfaces of the cell. In two-dimensional cases with the
use of a triangular mesh, the flux function will be calculated four times.

It is possible to reduce the operational count related to the flux calculation. In
the optimum condition, the flux could be calculated only once. However, this requires
very careful programing to avoid the so called race condition. A race condition occurs
when two or more computational threads attempt to modify the value of the same
variable at the same time. The error due to the race condition would not occur if the
program was running in a serial mode, or if each thread had its own memory when
the program runs using multiple threads. However, SOLVCON is designed to run in
a parallel mode that uses both shared and distributed memory.

The numerical algorithms put forth in this chapter are meant to provide a detailed
outline of the numerical implementation of equation that were derived in Chapters 2,
3, and 4. Some algorithms presented the equation exactly as they were presented while

others provided a more numerically efficient approach to achieve the same results. By
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using the equations derived in the earlier chapters and the algorithms presented in
this chapter future researchers should be able to use these as a template in creation

of their own high-order CESE code.
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CHAPTER 6

SUMMARY AND CONCLUSION

6.1 Achievements

In this dissertation, the original second-order space-time CESE Method has been ex-
tended to a hierarchy of high-order CESE methods. The newly developed algorithms
are general and are valid for all high-order of accuracy for the CESE methods, in-
cluding the fourth-, sixth-, eighth-order, etc. The development of the new algorithms
include a hierarchy of space-time integration equations for time-marching solutions
in one-, two- and three-dimensional spaces. For two- and three-dimensional prob-
lems, unstructured meshes are employed for spatial discretization. Numerical imple-
mentation of the new high-order methods include one-, two-, and three-dimensional
computer codes for time-accurate numerical solutions of the Fuler equations for com-
pressible flows. For two- and three-dimensional codes, the new high-order CESE
codes are developed based on the use of unstructured meshes with capabilities of us-

ing mixed elements. For two-dimensional simulations, unstructured meshes could be
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composed of a mixture of triangles and quadrilaterals. For three-dimensional prob-
lems, the mesh employed could be composed of tetrahedrons, pyramids, prisms, and
hexahedrons.

The new high-order CESE methods retains the following favorable characteristics
of the original second-order CESE method: (i) The method is based on integrating
the unique space-time integral equation for the time marching calculation. (ii) The
mesh stencil is compact in the sense that only the cell adjoint to the central cell where
the solution at the new time level is sought are involved in the algorithm. (iii) For
stable calculation, the CFL number must be less than 1. This CFL constraint is
identical to that of the original second-order CESE method. (iv) The algorithms
are truly multi-dimensional in the sense that no directional splitting is used in the
algorithm. (v) The algorithms as well as the associated codes can handle complex
geometries by using unstructured meshes. The codes were written so that mesh
composed of mixed types of cells can be used.

In this development, the one-, two-, and three-dimensional Euler equations for
compressible flows were used as a model equation. The new high-order CESE codes
have been developed in a computational framework, SOLVCON. Therefore, the high-
order CESE solvers can be readily applied to solve linear or nonlinear hyperbolic
PDEs as well as conservation laws other than the Euler equations.

The newly developed one-, two-, and three-dimensional high-order CESE methods

as well as the associated codes have been extensively tested by numerical simulations
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of well known benchmarked problems defined in one-, two- and three-dimensional
space. The numerical results show that the new high-order CESE methods and
codes can achieve the desired order of accuracy and can accurately resolve solution
discontinuities incurred by shock waves in supersonic compressible flows.

The new high-order CESE solvers have been successfully developed and validated.
The resultant methods and codes fill the void in the existing capabilities of the second-
order CESE method. More than all, the results of the present work also demonstrate
a new direction in developing high-order, unstructured-meshed CFD methods and
codes.

By using the one-dimensional CESE method and codes, numerical solutions of
linear wave equations up to twentieth-order in accuracy have been reported. For
solving the nonlinear Euler equations, results up to twelfth-order are reported. For
two- and three-dimensional problems, fourth-order methods and codes have been
developed. The methods and codes were verified and validate for solving the linear
advection equation as well as the nonlinear Euler equations. Theoretically, the two-
and three-dimensional, fourth-order solvers can be straightforwardly extended to be
sixth-, eight-, and higher-order. However, these multi-dimensional solvers were not

developed due to the memory requirements and associated code complexity.
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6.2 Future Research

The newly developed, high-order, multi-dimensional solvers open the door for the
following new areas of algorithm and code development: (i) The solving of other flow
physics such as the Navier-Stokes equations for viscous flows. (ii) The development
of a hybrid second /fourth-order solver. (iii) The optimizing the weighing schemes for
the higher-order methods. (iv) The development of higher-order boundary condition
treatments. (v) The effect that the alternate rule of differentiation has on the accuracy
of the solution.

In what follows, further illustration is provided for each proposed task.

Some of these topics are already being addressed by other researchers. For exam-
ple, Chang|63| has developed a Navier-Stokes solver that employs the alternative rule
for differentiation. By applying the alternate rule, the number of conserved variables
is reduced considerably. For two-dimensions, the number of the unknowns drops from
15 to 10. For three-dimensional problems, the number of unknowns drops from 40
to 20. The savings will be even more substantial for sixth- and higher-order solvers.
Not only the required memory goes down but also the internal algorithms become
simpler. The development of a high-order, Navier-Stokes solver is also important.
When using the second-order CESE method, a first-order Taylor series is employed.
However, the viscous terms are second-order derivatives, and there is no clear method
to calculate the viscous terms. For the fourth-order CESE method, the third-order

Taylor series are used to discretize the primary unknowns and flux functions. As
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such, the second-order derivatives of the primary unknowns can be well defined and
be used in calculating the viscous terms.

A hybrid second/fourth-order solver could be more computationally efficient when
compared to the fourth-order CESE solver. Essentially, in such a hybrid solver, the
second-order CESE method and the fourth-order CESE method are used simulta-
neously in the same simulation. One possibility for a scheme like this would be to
apply a second-order solver to the free-stream region of the compressible flow being
simulated, where the flow is essentially steady and uniform and thus the use of the
original second-order method could significantly reduce the operational counts of the
overall computational task.

Another possibility for a hybrid code is to apply the second-order CESE method in
regions where a strong shock is present [63|. Essentially, a shock sensor could be used
to detect the presence of shock waves. When a shock is detected, the numerical scheme
employed would be automatically changed to be the second-order CESE method,
which in turn provides a suitable platform for using the limiter to capture the shock
waves.

In all results presented in the present dissertation, the second-order boundary
condition has been applied. For example, a slip boundary condition parallel to the
wall was applied as the wall condition. At the far field and outlets, the non-reflective
boundary conditions have been applied. In such boundary condition treatments, the

second- and third-order derivatives were set to be null. A more accurate boundary
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condition treatment could be possible, if the second and third derivatives were com-
puted according to certain logics. Another approach to the higher-order boundary
condition treatments is to consider the curvature of the wall. One possible approach
to find the derivatives would be implementing a flux conservative boundary condi-
tion. Although previous attempts have shown little benefit from a flux conservative
boundary condition treatment, the addition of higher-order terms may change this
previous finding.

Another possible topic for future research would be to optimize the reweighing
scheme to be higher orders. One potential improvement would be utilizing the multi-
ple representations of the same derivatives during the reweighing calculation. For ex-
ample, consider the following derivatives 9*u/dz0zdy, 03u/0xdydxr and *u/dydxdx.
All above three derivatives represent the same change in the conserved quantity u
but are calculated using three different governing equations with different primary
unknowns, i.e., the additional equations for 8?u/dz0x, 8*u/dxdy and 9*u/Oydx. Tt
is currently unknown if these three governing equations would have the same stability
characteristics when a solution discontinuity is present in the flow filed. It is possible
to use the reweighing idea, if the alternative differentiating rule is applicable. In such

9%u
Oyox

case, only the third additional governing equation for could be dropped due to

the alternative rule assumption.
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